terclim by ICS banner
IVES 9 IVES Conference Series 9 EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Abstract

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines. Winemakers often assured that they had not applied the fungicide, however, without providing solid proof. This development has fueled the need to better understand potential phosphonate sources and, in particular, phosphonate uptake and distribution in vines. For this purpose, we set up an isolated test field with container vines, allowing to investigate different routes of uptake and the subse- quent mobility of phosphonate over two consecutive years after defined applications. Samples of leaves, stems and berries were analysed by IC-ICP-MS, being validated for quantification of low phosphonate levels therein (LOQs of 0.08-0.15 mg/kg fresh weight). Thereby, grapevines were shown to take up well detectable amounts of phosphonate through the roots, although the total amount found in berries was significantly lower when applying a 0.54 % (w/v) phosphonate solution to the roots (6 mg/kg) than after foliar spray application (38 mg/kg). Furthermore, the determination of the ratios of phosphonate levels in leaves and those in stems allowed identifying whether the vines were sprayed with phosphonate or took up phosphonate through the roots, e.g., from contaminated groundwater. We also present data from open-field vineyards to validate the results obtained with container vines. Besides soil-borne phospho- nate, we also found phosphonate residues in enological additives and processing aids, also contributing to potential phosphonate contaminations in the final wine product. In brief, our contribution will provi- de new insights into the origin of phosphonate in vines and derived wines originating from vineyards that had not been sprayed with phosphonate in the respective growing season.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Sören Otto1, Randolf Kauer2, Yvette Wohlfahrt¹, Beate Berkelmann-Löhnertz3, Bianca May4, Ralf Schweiggert1

1. Geisenheim University, Von-Lade-Strasse 1, D-65366 Geisenheim, Germany
2. Department of Beverage Research, Chair of Analysis & Technology of Plant-based Foods
3. Department of Viticulture, Chair of Organic Viticulture
4. Department of Crop Protection, Chair of Crop Protection in Viticulture and Horticulture
5. Department of Enology, Chair of Wine and Beverage Chemistry

Contact the author*

Keywords

phosphonic acid, contaminants, IC-ICP-MS, organic viticulture

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines.

METABOLIC INTERACTIONS OF SACCHAROMYCES CEREVISIAE COCULTURES: A WAY TO EXTEND THE AROMA DIVERSITY OF CHARDONNAY WINE

Yeast co-inoculations in winemaking have been investigated in various applications, but most often in the context of modulating the aromatic profiles of wines. Our study aimed to characterize S. cerevisiae interactions and their impact on wine by taking an integrative approach. Three cocultures and corresponding pure cultures of S. cerevisiae were characterized according to their fermentative capacities, the chemical composition and aromatic profile of the associated Chardonnay wines. The various strains studied within the cocultures showed different behaviors regarding their development.

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.

NEAR INFRARED SPECTROSCOPY FOR THE ESTIMATION OF TEMPRANILLO BLANCO VOLATILE COMPOSITION ALONG GRAPE MATURATION

Grape volatile compounds are mainly responsible for wine aroma, so it is important to know the va-rietal aromatic composition throughout ripening process. Currently, there are no tools that allow mea-suring the aromatic composition of grapes, in intact berries and periodically, throughout ripening, in the vineyard or in the winery. For this reason, this work evaluated the use of near infrared spectroscopy (NIR) to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening. For this purpose, NIR spectra (1100-2100 nm) were acquired from 240 samples of in-tact berries, collected at different dates, from veraison to overripening.

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown.