terclim by ICS banner
IVES 9 IVES Conference Series 9 EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Abstract

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines. Winemakers often assured that they had not applied the fungicide, however, without providing solid proof. This development has fueled the need to better understand potential phosphonate sources and, in particular, phosphonate uptake and distribution in vines. For this purpose, we set up an isolated test field with container vines, allowing to investigate different routes of uptake and the subse- quent mobility of phosphonate over two consecutive years after defined applications. Samples of leaves, stems and berries were analysed by IC-ICP-MS, being validated for quantification of low phosphonate levels therein (LOQs of 0.08-0.15 mg/kg fresh weight). Thereby, grapevines were shown to take up well detectable amounts of phosphonate through the roots, although the total amount found in berries was significantly lower when applying a 0.54 % (w/v) phosphonate solution to the roots (6 mg/kg) than after foliar spray application (38 mg/kg). Furthermore, the determination of the ratios of phosphonate levels in leaves and those in stems allowed identifying whether the vines were sprayed with phosphonate or took up phosphonate through the roots, e.g., from contaminated groundwater. We also present data from open-field vineyards to validate the results obtained with container vines. Besides soil-borne phospho- nate, we also found phosphonate residues in enological additives and processing aids, also contributing to potential phosphonate contaminations in the final wine product. In brief, our contribution will provi- de new insights into the origin of phosphonate in vines and derived wines originating from vineyards that had not been sprayed with phosphonate in the respective growing season.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Sören Otto1, Randolf Kauer2, Yvette Wohlfahrt¹, Beate Berkelmann-Löhnertz3, Bianca May4, Ralf Schweiggert1

1. Geisenheim University, Von-Lade-Strasse 1, D-65366 Geisenheim, Germany
2. Department of Beverage Research, Chair of Analysis & Technology of Plant-based Foods
3. Department of Viticulture, Chair of Organic Viticulture
4. Department of Crop Protection, Chair of Crop Protection in Viticulture and Horticulture
5. Department of Enology, Chair of Wine and Beverage Chemistry

Contact the author*

Keywords

phosphonic acid, contaminants, IC-ICP-MS, organic viticulture

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

NEW TREATMENTS FOR TEMPRANILLO WINES BY USING CABERNET SAUVIGNON VINE-SHOOTS AND MICRO-OXYGENATION

Toasted vine-shoots as enological additive represents a promising topic due to their significant effect on wine profile. However, the use of this new enological tool with SEGs varieties different than wine and combined with others winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far, despite this combination could result in wine with high chemical and organoleptic quality.

CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

Interspecific hybrid winegrapes are of growing interest in the context of climate change based on their disease resistance and cold hardiness. In addition to a need for increased understanding of their chemical composition, there is little empirical evidence on the consumer perception of non-vinifera wine. Phenolic compounds, and particularly color, play an important organoleptic and quality determination role in wine, but can vary significantly in interspecific hybrid wines compared to wines produced from Vitis vinifera cultivars [1, 2, 3]. Anecdotally, the variation in anthocyanin species, interactions, and concentrations in interspecific hybrids could result in a variance from“vinifera-like” wine color.

IMPACT OF CLIMATIC CONDITIONS ON THE SEASONING QUALITY OF OAK WOOD FOR OENOLOGICAL USE (QUERCUS PETRAEA)

For coopers, seasoning and toasting are considered crucial steps in barrel making during which the oak wood develops specific organoleptic properties. Seasoning, carried out in the open air, allows reducing the moisture content of the staves to between 14 and 18% (compared to 70 to 90% after splitting) while modulating the intrinsic composition of the oak wood. Toasting consists of applying different degrees of heat to a barrel for a specific period of time. As the temperature increases, oak wood produces a wide range of chemical compounds through thermal degradation of its intrinsic composition.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: LEVELS AND PATTERNS OBSERVED IN 2020 WINES FROM THE UNITED STATES WEST COAST

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors, described as “smoky”, “bacon”, “campfire” and “ashtray”, often long-lasting and lingering on the palate. In cases of large wildfire events, economic losses for all wine industry actors can be devastating.

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.