terclim by ICS banner
IVES 9 IVES Conference Series 9 EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Abstract

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines. Winemakers often assured that they had not applied the fungicide, however, without providing solid proof. This development has fueled the need to better understand potential phosphonate sources and, in particular, phosphonate uptake and distribution in vines. For this purpose, we set up an isolated test field with container vines, allowing to investigate different routes of uptake and the subse- quent mobility of phosphonate over two consecutive years after defined applications. Samples of leaves, stems and berries were analysed by IC-ICP-MS, being validated for quantification of low phosphonate levels therein (LOQs of 0.08-0.15 mg/kg fresh weight). Thereby, grapevines were shown to take up well detectable amounts of phosphonate through the roots, although the total amount found in berries was significantly lower when applying a 0.54 % (w/v) phosphonate solution to the roots (6 mg/kg) than after foliar spray application (38 mg/kg). Furthermore, the determination of the ratios of phosphonate levels in leaves and those in stems allowed identifying whether the vines were sprayed with phosphonate or took up phosphonate through the roots, e.g., from contaminated groundwater. We also present data from open-field vineyards to validate the results obtained with container vines. Besides soil-borne phospho- nate, we also found phosphonate residues in enological additives and processing aids, also contributing to potential phosphonate contaminations in the final wine product. In brief, our contribution will provi- de new insights into the origin of phosphonate in vines and derived wines originating from vineyards that had not been sprayed with phosphonate in the respective growing season.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Sören Otto1, Randolf Kauer2, Yvette Wohlfahrt¹, Beate Berkelmann-Löhnertz3, Bianca May4, Ralf Schweiggert1

1. Geisenheim University, Von-Lade-Strasse 1, D-65366 Geisenheim, Germany
2. Department of Beverage Research, Chair of Analysis & Technology of Plant-based Foods
3. Department of Viticulture, Chair of Organic Viticulture
4. Department of Crop Protection, Chair of Crop Protection in Viticulture and Horticulture
5. Department of Enology, Chair of Wine and Beverage Chemistry

Contact the author*

Keywords

phosphonic acid, contaminants, IC-ICP-MS, organic viticulture

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.

THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

The composition of grape berry cell walls was studied on two grape varieties, two years and two maturation levels at the same time as the extraction of anthocyanins and tannins. The chemical composition of skins, seeds, and pulps, focused on polyphenols and polysaccharides, was compared to the chemical composition in polyphenols after extraction from the skins in model solutions or after wine making of the berries. Polyphenols were mainly characterized by UPLC-MS and HPLC-SEC. Polysaccharides were characterized by analysis of the neutral sugar compositions, and also by the CoMPP (comprehensive micropolymer profiling) analysis, a new method which targets the functional groups of cell wall polysaccharides.

AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

In recent years characterized by hot dry summers, the implementation of innovative irrigation tools in the vineyard represents a crucial challenge to ensure optimal production and to avoid excess of water consumption. It is known that the grapevine reacts to multiple stresses – i.e., high temperatures and wa- ter shortage – through adaptive mechanisms that are detrimental to the yield. Furthermore, this condi- tion is usually aggravated by high solar radiation, which could negatively affect the phenolic composi- tion of the grapes. Therefore, a cooling system has been developed aiming to reduce bunches’ sunburn damage.

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].