terclim by ICS banner
IVES 9 IVES Conference Series 9 EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Abstract

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines. Winemakers often assured that they had not applied the fungicide, however, without providing solid proof. This development has fueled the need to better understand potential phosphonate sources and, in particular, phosphonate uptake and distribution in vines. For this purpose, we set up an isolated test field with container vines, allowing to investigate different routes of uptake and the subse- quent mobility of phosphonate over two consecutive years after defined applications. Samples of leaves, stems and berries were analysed by IC-ICP-MS, being validated for quantification of low phosphonate levels therein (LOQs of 0.08-0.15 mg/kg fresh weight). Thereby, grapevines were shown to take up well detectable amounts of phosphonate through the roots, although the total amount found in berries was significantly lower when applying a 0.54 % (w/v) phosphonate solution to the roots (6 mg/kg) than after foliar spray application (38 mg/kg). Furthermore, the determination of the ratios of phosphonate levels in leaves and those in stems allowed identifying whether the vines were sprayed with phosphonate or took up phosphonate through the roots, e.g., from contaminated groundwater. We also present data from open-field vineyards to validate the results obtained with container vines. Besides soil-borne phospho- nate, we also found phosphonate residues in enological additives and processing aids, also contributing to potential phosphonate contaminations in the final wine product. In brief, our contribution will provi- de new insights into the origin of phosphonate in vines and derived wines originating from vineyards that had not been sprayed with phosphonate in the respective growing season.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Sören Otto1, Randolf Kauer2, Yvette Wohlfahrt¹, Beate Berkelmann-Löhnertz3, Bianca May4, Ralf Schweiggert1

1. Geisenheim University, Von-Lade-Strasse 1, D-65366 Geisenheim, Germany
2. Department of Beverage Research, Chair of Analysis & Technology of Plant-based Foods
3. Department of Viticulture, Chair of Organic Viticulture
4. Department of Crop Protection, Chair of Crop Protection in Viticulture and Horticulture
5. Department of Enology, Chair of Wine and Beverage Chemistry

Contact the author*

Keywords

phosphonic acid, contaminants, IC-ICP-MS, organic viticulture

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4

NEW TREATMENTS FOR TEMPRANILLO WINES BY USING CABERNET SAUVIGNON VINE-SHOOTS AND MICRO-OXYGENATION

Toasted vine-shoots as enological additive represents a promising topic due to their significant effect on wine profile. However, the use of this new enological tool with SEGs varieties different than wine and combined with others winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far, despite this combination could result in wine with high chemical and organoleptic quality.

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity.

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine.

THE INFLUENCE OF COMMERCIAL SACCHAROMYCES CEREVISIAE ON THE POLY-SACCHARIDES AND OTHER CHEMICAL PROFILES OF NEW ZEALAND PINOT NOIR WINES

Wine polysaccharides (PS) play an important role in balancing mouthfeel and stability of wine and even influence aroma volatility. Despite this, there is limited research into the effect of winemaking additives on the polysaccharide profile and other macromolecules of New Zealand (NZ) Pinot noir wine. In this study the influence of a selection of commercial S. cerevisiae strains on the chemical profile, including polysaccharides, of New Zealand Pinot noir (PN) wine was investigated. Research scale PN fermentations using five strains of commercially available S. cerevisiae (Lalvin EC1118 and RC212, Levuline BRG YSEO, Viallate Ferm R71 and R82) were undertaken. PS were qualified and quantified using HPLC-RID.