terclim by ICS banner
IVES 9 IVES Conference Series 9 AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

Abstract

In recent years characterized by hot dry summers, the implementation of innovative irrigation tools in the vineyard represents a crucial challenge to ensure optimal production and to avoid excess of water consumption. It is known that the grapevine reacts to multiple stresses – i.e., high temperatures and wa- ter shortage – through adaptive mechanisms that are detrimental to the yield. Furthermore, this condi- tion is usually aggravated by high solar radiation, which could negatively affect the phenolic composi- tion of the grapes. Therefore, a cooling system has been developed aiming to reduce bunches’ sunburn damage. The system is composed of both a network of proximal sensors able to acquire the microclimatic data within the vineyard and an actuator that triggers the nebulizers when the air temperature threshold of 35 °C is exceeded. The system was evaluated at the experimental vineyard of University of Bologna during the 2022 season on Pignoletto, an Italian white grape cultivar. Three treatments were evaluated: non-defoliated control (C), vines subjected to defoliation of the basal leaves (DI) and vines subject to the same defoliation and sprayed with nebulized water (FOG) in order to verify the effects on yield attri- butes, berry necrosis and secondary metabolites such as flavonols, responsible for white wine browning. The application of nebulized water in the cluster zone was able to reduce the temperatures of the berries compared to C and DI. Furthermore, the vines subjected to nebulized water showed to be more produc- tive than the C and DI vines without affecting any technological maturity parameters. In conclusion, the cooling system of the fruiting area seems to be an excellent device for reducing the negative effect of multiple summer stresses on grapes with regards in sunburn damage and grape composition.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Ginaluca Allegro1, Chiara Pastore1, Riccardo Mazzoleni1, Massimo Noferini2, Ilaria Filippetti1

1. University of Bologna, Department of Agricultural and Food Sciences (DISTAL), Viale Giuseppe Fa- nin 46, 40127 Bologna, Italy
2. iFarming srl, Imola, Bologna, Italy

Contact the author*

Keywords

Climate change, Precision irrigation, Sunburn damage, Phenolic maturity

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

REMEDIATION OF SMOKE TAINTED WINE USING MOLECULARLY IMPRINTED POLYMERS

In recent years, vineyards in Australia, the US, Canada, Chile, South Africa and Europe have been exposed to smoke from wildfires. Wines made from smoke-affected grapes often exhibit unpleasant smoky, ashy characters, attributed to the presence of smoke-derived volatile compounds, including volatile phenols (which occur in free and glycosylated forms). Various strategies for remediation of smoke tainted wine have been evaluated. The most effective strategies involve the removal of smoke taint compounds via the addition of adsorbent materials such as activated carbon, which can either be added directly or used in combination with nanofiltration. However, these treatments often simultaneously remove wine constituents responsible for desirable aroma, flavour and colour attributes.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).

UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

Xinomavro is a red grape variety from Northern Greece (Protected Designation of Origin), known for the nice acidities, perfectly appropriate for sparkling wine production (Rosé and Blanc de Noir). The elabo- ration of sparkling wine requires technical as well as scientific skills. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown.
The present work focuses (i) on the population diversity of lactic acid bacteria isolated from sparkling wines and (ii) on the technological effect of the species during sparkling wine elaboration.

CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

Interspecific hybrid winegrapes are of growing interest in the context of climate change based on their disease resistance and cold hardiness. In addition to a need for increased understanding of their chemical composition, there is little empirical evidence on the consumer perception of non-vinifera wine. Phenolic compounds, and particularly color, play an important organoleptic and quality determination role in wine, but can vary significantly in interspecific hybrid wines compared to wines produced from Vitis vinifera cultivars [1, 2, 3]. Anecdotally, the variation in anthocyanin species, interactions, and concentrations in interspecific hybrids could result in a variance from“vinifera-like” wine color.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: LEVELS AND PATTERNS OBSERVED IN 2020 WINES FROM THE UNITED STATES WEST COAST

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors, described as “smoky”, “bacon”, “campfire” and “ashtray”, often long-lasting and lingering on the palate. In cases of large wildfire events, economic losses for all wine industry actors can be devastating.