GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Harvest dates – temperature relationships and thermal requirements of winegrape varieties in Greece: observed and future climate responses

Harvest dates – temperature relationships and thermal requirements of winegrape varieties in Greece: observed and future climate responses

Abstract

Context and purpose of the study Air temperature is arguably one of the most decisive factors for winegrape varieties developmental cycle, ripening potential and yield. Taking into account that predicted future warmer conditions will possibly impose challenges in global viticulture, it is of outmost importance to understand the adaptive capacity of each variety in the current and future climate conditions. Thus, the objective of this study was twofold: (a)to investigate the relationships between air temperature during the ripening period and harvest dates for eight principally cultivated indigenous winegrape varieties (one for each winegrape region of Greece) and (b) to assess varieties’ thermal demands (four varieties) using the standard growing degree day (GDD) formula and project harvest date in two future windows using a multi-Regional Climate Model ensemble dataset.

Material and methods Harvest dates were assembled from four white [cvs. Muscat of Alexandria (Limnos), Assyrtiko (Santorini), Muscat blanc (Samos) and Athiri (Rodos)] and four red [cvs. Moschofilero (Tripoli), Mavrodaphni (Pyrgos), Mandilaria (Crete) and Xinomavro (Naoussa)] varieties, covering a period from 11 to 44 years. Daily observations of maximum (TX) and minimum (TN) air temperature were obtained from the Hellenic National Meteorological Service (HNMS) in order: (a) to investigate the relationships between harvest dates and temperature conditions during the ripening period and (b) to o calculate growing degree days (GDD, C units) for each variety. In addition, high resolution ensemble datasets (derived from 5 model experiments) with the two representative concentration pathways 4.5 (RCP4.5) and 8.5 (RCP8.5) were employed to project harvest dates for two future time windows [future projection 1 (FP1): 2041-2065 and future projection 2 (FP2): 2071-2095]. Pearson’s correlation coefficient was used to investigate relationships between air temperature and harvest date. Statistical significance was set at p< 0.05.

Results Harvest dates showed negative trends in six out of eight cases (four cases statistically significant) while in two areas (Crete and Pyrgos) harvest occurs later. In addition, harvest date – temperature analysis showed significant negative relations in seven out of eight cases. Rodos (cv. Athiri) was the only case with a significant positive relationship. Heat requirement analysis revealed that two varieties (cvs. Muscat of Alexandria and Moschofilero) needed almost 1700 GDD to achieve full maturity while the other two varieties (cvc. Mavrodaphni and Xinomavro) exceeded 2000 GDD units (2021 and 2049, respectively). Future projection analysis showed that harvest will shift earlier for all varieties (ranging approximately from one to two months) and this shift in both time windows will depend on the variety and the selected emission scenario. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Georgios C.KOUFOS (1), Theodoros MAVROMMATIS (1), Stefanos KOUNDOURAS (2), Gregory V. JONES (3)

(1) Department of Meteorology and Climatology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
(2) Laboratory of Viticulture, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
(3) Center for Wine Education, Linfield College, McMinnville, Oregon, USA.

Contact the author

Keywords

 Grape variety, Heat requirements, Climate change, Regional climate models

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Updating the Winkler index: An analysis of Cabernet sauvignon in Napa Valley’s varied and changing climate

This study aims to create an updated, agile viticultural climate index (similar to the Winkler Index) by performing in-depth analyses of current and historical data from industry partners in several major winegrowing regions. The Winkler Index was developed in the early twentieth century based on analysis of various grape-growing regions in California. The index uses heat accumulation (i.e. Growing Degree Days) throughout the growing season to determine which grape varieties are best suited to each region. As viticultural regions are increasingly subject to the complexity and uncertainty of a changing climate, a more rigorous, agile model is needed to aid grape growers in determining which cultivars to plant where. For the first phase of this study, 21 industry partners throughout Napa Valley shared historical phenology, harvest, viticultural practice, and weather data related to their Cabernet sauvignon vineyard blocks. To complement this data, berry samples were collected throughout the 2021 growing season from 50 vineyard blocks located throughout 16 American Viticultural Areas that were then analyzed for basic berry chemistry and phenolics. These blocks have been mapped using a Geographic Information System (GIS), enabling analysis of altitude, vineyard row orientation, slope, and remotely sensed climate data. Sampling sites were also chosen based on their proximity to a weather station. By analyzing historical data from industry partners and data specifically collected for this study, it is possible to identify key parameters for further analysis. Initial results indicate extreme variability at a high spatial resolution not currently accounted for in modern viticultural climate indices and suggest that viticultural practices play a major role. Using the structure of data collection and analyses developed for the first phase, this project will soon be expanded to other wine regions globally, while continuing data collection in Napa Valley.

Withering of the ‘Moscato giallo’ grapes under covered space

For the purpose of producing predicate wines in northern part of Croatia, grapes are traditionally left on the vine unpicked. However, grapes on the vine are exposed to unfavorable environmental conditions that affect rapid rotting and attacked by birds. To eliminate the mentioned risks, the grapes can be picked and placed in a protected space (loft, greenhouse, etc.) suitable for drying. This study presents the results of research on withering grapes of the ‘Moscato giallo’ variety in two tretment: sun drying (under covered terrace) and drying in the shade (loft). The following quality parameters were monitored: mass of grapes, sugar concentration, content of total acids, pH, content of organic acids.

Measurements of the oxygen dissolved in white wines elaborated in barrels without to open the bung of the barrels

Bases on oxoluminescence, we have developed an innovative device for measuring dissolved oxygen in wines in barrels without opening the bung. This system is directly inserted into the wood during the barrel elaboration and can be positioned at different locations of the barrel (the head, the hull …). During two successive vintages we have used this device notably to follow the oxygen dissolved of whites wines elaborated in barrels. This allowed us initially to monitor the oxygen levels of the harvest to bottling the whole elaboration process in barrels of white wines without using techniques of measurement suitable to modify the real values in wines (opening the bung to plunge an oximeter).

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.

Barrels ad-hoc: Spanish oak wood classification by NIRs 

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.
Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].