GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Harvest dates – temperature relationships and thermal requirements of winegrape varieties in Greece: observed and future climate responses

Harvest dates – temperature relationships and thermal requirements of winegrape varieties in Greece: observed and future climate responses

Abstract

Context and purpose of the study Air temperature is arguably one of the most decisive factors for winegrape varieties developmental cycle, ripening potential and yield. Taking into account that predicted future warmer conditions will possibly impose challenges in global viticulture, it is of outmost importance to understand the adaptive capacity of each variety in the current and future climate conditions. Thus, the objective of this study was twofold: (a)to investigate the relationships between air temperature during the ripening period and harvest dates for eight principally cultivated indigenous winegrape varieties (one for each winegrape region of Greece) and (b) to assess varieties’ thermal demands (four varieties) using the standard growing degree day (GDD) formula and project harvest date in two future windows using a multi-Regional Climate Model ensemble dataset.

Material and methods Harvest dates were assembled from four white [cvs. Muscat of Alexandria (Limnos), Assyrtiko (Santorini), Muscat blanc (Samos) and Athiri (Rodos)] and four red [cvs. Moschofilero (Tripoli), Mavrodaphni (Pyrgos), Mandilaria (Crete) and Xinomavro (Naoussa)] varieties, covering a period from 11 to 44 years. Daily observations of maximum (TX) and minimum (TN) air temperature were obtained from the Hellenic National Meteorological Service (HNMS) in order: (a) to investigate the relationships between harvest dates and temperature conditions during the ripening period and (b) to o calculate growing degree days (GDD, C units) for each variety. In addition, high resolution ensemble datasets (derived from 5 model experiments) with the two representative concentration pathways 4.5 (RCP4.5) and 8.5 (RCP8.5) were employed to project harvest dates for two future time windows [future projection 1 (FP1): 2041-2065 and future projection 2 (FP2): 2071-2095]. Pearson’s correlation coefficient was used to investigate relationships between air temperature and harvest date. Statistical significance was set at p< 0.05.

Results Harvest dates showed negative trends in six out of eight cases (four cases statistically significant) while in two areas (Crete and Pyrgos) harvest occurs later. In addition, harvest date – temperature analysis showed significant negative relations in seven out of eight cases. Rodos (cv. Athiri) was the only case with a significant positive relationship. Heat requirement analysis revealed that two varieties (cvs. Muscat of Alexandria and Moschofilero) needed almost 1700 GDD to achieve full maturity while the other two varieties (cvc. Mavrodaphni and Xinomavro) exceeded 2000 GDD units (2021 and 2049, respectively). Future projection analysis showed that harvest will shift earlier for all varieties (ranging approximately from one to two months) and this shift in both time windows will depend on the variety and the selected emission scenario. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Georgios C.KOUFOS (1), Theodoros MAVROMMATIS (1), Stefanos KOUNDOURAS (2), Gregory V. JONES (3)

(1) Department of Meteorology and Climatology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
(2) Laboratory of Viticulture, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
(3) Center for Wine Education, Linfield College, McMinnville, Oregon, USA.

Contact the author

Keywords

 Grape variety, Heat requirements, Climate change, Regional climate models

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The effect of rootstock on water relations and gas exchange of Vitis vinifera cv. Xinomavro

The effect of two rootstocks of different drought tolerance (1103 Paulsen and 3309 Couderc) on sap flow, water relations and gas exchange of cv. Xinomavro (Vitis vinifera L.) was investigated during the 2005 season in Naoussa, Greece. Soil was maintained at field capacity for both rootstock treatments until mid July when a restricted water regime was applied by irrigation cutoff. Sap flow diurnals for the Xinomavro-1103P combination showed a rapid decrease of flow after midday, under water stress conditions.

PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

The wine industry worldwide faces more and more challenges due to climate change, such as increased dryness in some areas, water stress, sunburn and early harvesting during hot summer temperatures¹. One of the resulting problems for the wine quality might be a higher prevalence of the untypical aging off-flavor (ATA)². A substance, which Rapp and Versini made responsible for ATA, is the 2-aminoace-tophenone (2-AAP)³. 2-AAP in wine causes a naphthalene, wet towels, wet wool, acacia flower or just a soapy note⁴.

Physical-chemical characterization of Moscatel de Setúbal fortified wines from different vintages

Moscatel de Setúbal is a Portuguese fortified wine with Protected Designation of Origin (PDO Setúbal), made from Moscatel de Setúbal grape variety (Muscat of Alexandria) [1].

Colloidal stabilization of young red wine by Acacia Senegal gum: the major implication of protein-rich arabinogalactan-proteins

Acacia senegal gum (Asen) is an edible dried gummy exudate [1] added in young red wines to ensure their colloidal stability, precluding the precipitation of the coloring matter. Asen macromolecules, belonging to the arabinogalactan-protein (AGP) family [2], are hyperbranched, charged and amphiphilic heteropolysaccharides composed especially of sugars (92-96 %) and a small fraction of proteins (1-3 %). Asen is defined as a continuum of macromolecules that could be separated into three fractions by hydrophobic interaction chromatography (HIC) [3-4]. HIC-F1 (85-94 % of Asen), HIC-F2 (6-18 % of Asen) and HIC-F3 (1-3 % of Asen) are named and classified in that order according to their protein content, and then a growing hydrophobicity. The efficiency of Asen towards the coloring matter instability is evaluated according to an “efficacy test” that consists to determine the Asen quantity required to prevent the flocculation by calcium of a colloidal iron hexacyanoferrate solution (International Oenological Codex).

Influence Of Different Grape Polysaccharides On Phenolic Compounds And Colour Characteristics Of Tempranillo Red Wines

Polysaccharides (PS) are one of the main compounds found in wines, and they come mainly from the grape cell walls or from the yeasts, and they play an important role in the technological and sensory characteristics of wines. Polysaccharides obtained from yeasts have been more studied, especially mannoproteins, since there are commercial products.