terclim by ICS banner
IVES 9 IVES Conference Series 9 NEUROPROTECTIVE AND ANTI-INFLAMMATORY PROPERTIES OF HYDROXYTYROSOL: A PROMISING BIOACTIVE COMPONENT OF WINE

NEUROPROTECTIVE AND ANTI-INFLAMMATORY PROPERTIES OF HYDROXYTYROSOL: A PROMISING BIOACTIVE COMPONENT OF WINE

Abstract

Hydroxytyrosol (HT) is a phenolic compound present in olives, virgin olive oil and wine. HT has attracted great scientific interest due to its biological activities which have been related with the ortho-dihydroxy conformation in the aromatic ring. In white and red wines, HT has been detected at concentrations ranging from 0.28 to 9.6 mg/L and its occurrence has been closely related with yeast metabolism of aromatic amino acids by Ehrlich pathway during alcoholic fermentation. One of the most promising properties of this compound is the neuroprotective activity against pathological mechanisms related with neurodegenerative disorders including Alzheimer’s and Parkinson’s disease. Alpha-synuclein (αsyn), is a 140 amino acid protein abundant in the brain. In Parkinson’s disease, insoluble forms of this protein accumulate forming inclusions termed Lewy bodies which unravel different molecular events that finally cause the death of dopaminergic neurons. In order to evaluate the capacity of HT to inhibit αsyn fibril formation and to study the effect of this compound against αsyn induced toxicity and inflammation, several techniques have been used including fluorescence spectroscopy, transmission electronic microscopy, RT-PCR, western blot and immunohistochemistry. Our results demonstrate that HT (at micromolar levels, 25-50 µM) presents a strong inhibitory effect preventing not only αsyn aggregation but also exercising a destabilising effect by disaggregating αsyn fibrils. Moreover, HT is able to counteract αsyn-induced toxicity totally reverting the death of neuronal cells (PC12 cell line). Additionally, HT can reduce inflammation induced by αsyn fibrils in microglial cells (BV2 cell line). Indeed, a reduction of mRNA levels of TNF-α, iNOS, IL-1β, IL-6 and CXCL10 was observed after the co-treatment of BV2 with HT and αsyn fibrils. Our results also demonstrated that the molecular mechanisms involved in this effect are related with the modulation of mitogen activated protein kinases (MAPKs) and the generation of reactive oxygen species through nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. To sum up, our data support the use of HT to prevent neurotoxicity and inflammation associated with Parkinson’s disease.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Hornedo-Ortega, Ruth¹, Gallardo-Fernández, Marta¹, Cerezo, Ana Belén¹, Troncoso, Ana Mª1, Garcia-Parrilla, Mª Carmen¹

1. Departamento de Nutrici.n, Bromatolog.a, Toxicolog.a y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/ P. Garc.a Gonz.lez n. 2, 41012 Sevilla, Spain

Contact the author*

Keywords

hydroxytyrosol, alpha-synuclein, wine, neuroprotection

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermen- tation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

PHENOTYPIC DIVERSITY AND BIO-PROTECTION CAPABILITY OF METSCHNIKOWIA SP. IN OENOLOGY

Nowadays, the trend is to reduce the use of chemical inputs in the food sector, including in oenology. One of the inputs widely used in the wine making process are sulfites, for its several properties: antimicrobial and antioxidiant. This use isn’t without consequences on consumer’s health and environment, it can lead for example to allergic reactions and pollution. To limit the addition of chemical inputs, microbial alternatives are used. It consists to inoculate in grape must, a micro-organism able to inhibit the growth of the negative indigenous flora during the phase before the fermentation and to guarantee the sensory qualities of wines.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).

AROMA AND SENSORY CHARACTERIZATION OF XINOMAVRO RED WINES FROM DIFFERENT GREEK PROTECTED DESIGNATIONS OF ORIGIN, EFFECT OF TERROIR CHARACTERISTICS

The quality of wines has often been associated with their geographical area of production. The aim of this work was to characterize Protected Designation of Origin (PDO) Xinomavro red wines from different geographical areas of Amyndeon and Naoussa in Northern Greece, elaborated with variables that contribute to their differentiation, such as soil characteristics, altitude, monthly average temperature and rainfall.
Xinomavro fruit parcels from different vineyards within the two PDO zones (5 PDO Naoussa and 6 PDO Amyndeon) were vinified following a standard winemaking process. A total of 25 aroma compounds were quantified using gas chromatography-mass spectrometry (GC-MS) with simultaneous full scan and selected ion monitoring for data recording, and odor activity values (OAVs) were determined.

AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

Hanseniaspora vineae (Hv) is a fermenting non-Saccharomyces yeast that compared to Saccharomyces cerevisiae (Sc) present some peculiar features on its metabolism that make it attractive for its use in wine production. Among them, it has been reported a faster yeast lysis and release of polysaccharides, as well as increased ß-glucosidase activity. Hv also produces distinctive aroma compounds, including elevated levels of fermentative compounds such as ß-phenylethyl acetate and norisoprenoids like safranal. However, it is known for its high nutritional requirements, resulting in prolonged and sluggish fermentations, even when complemented with Sc strain and nutrients.