terclim by ICS banner
IVES 9 IVES Conference Series 9 NEUROPROTECTIVE AND ANTI-INFLAMMATORY PROPERTIES OF HYDROXYTYROSOL: A PROMISING BIOACTIVE COMPONENT OF WINE

NEUROPROTECTIVE AND ANTI-INFLAMMATORY PROPERTIES OF HYDROXYTYROSOL: A PROMISING BIOACTIVE COMPONENT OF WINE

Abstract

Hydroxytyrosol (HT) is a phenolic compound present in olives, virgin olive oil and wine. HT has attracted great scientific interest due to its biological activities which have been related with the ortho-dihydroxy conformation in the aromatic ring. In white and red wines, HT has been detected at concentrations ranging from 0.28 to 9.6 mg/L and its occurrence has been closely related with yeast metabolism of aromatic amino acids by Ehrlich pathway during alcoholic fermentation. One of the most promising properties of this compound is the neuroprotective activity against pathological mechanisms related with neurodegenerative disorders including Alzheimer’s and Parkinson’s disease. Alpha-synuclein (αsyn), is a 140 amino acid protein abundant in the brain. In Parkinson’s disease, insoluble forms of this protein accumulate forming inclusions termed Lewy bodies which unravel different molecular events that finally cause the death of dopaminergic neurons. In order to evaluate the capacity of HT to inhibit αsyn fibril formation and to study the effect of this compound against αsyn induced toxicity and inflammation, several techniques have been used including fluorescence spectroscopy, transmission electronic microscopy, RT-PCR, western blot and immunohistochemistry. Our results demonstrate that HT (at micromolar levels, 25-50 µM) presents a strong inhibitory effect preventing not only αsyn aggregation but also exercising a destabilising effect by disaggregating αsyn fibrils. Moreover, HT is able to counteract αsyn-induced toxicity totally reverting the death of neuronal cells (PC12 cell line). Additionally, HT can reduce inflammation induced by αsyn fibrils in microglial cells (BV2 cell line). Indeed, a reduction of mRNA levels of TNF-α, iNOS, IL-1β, IL-6 and CXCL10 was observed after the co-treatment of BV2 with HT and αsyn fibrils. Our results also demonstrated that the molecular mechanisms involved in this effect are related with the modulation of mitogen activated protein kinases (MAPKs) and the generation of reactive oxygen species through nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. To sum up, our data support the use of HT to prevent neurotoxicity and inflammation associated with Parkinson’s disease.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Hornedo-Ortega, Ruth¹, Gallardo-Fernández, Marta¹, Cerezo, Ana Belén¹, Troncoso, Ana Mª1, Garcia-Parrilla, Mª Carmen¹

1. Departamento de Nutrici.n, Bromatolog.a, Toxicolog.a y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/ P. Garc.a Gonz.lez n. 2, 41012 Sevilla, Spain

Contact the author*

Keywords

hydroxytyrosol, alpha-synuclein, wine, neuroprotection

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.

OENOLOGICAL POTENTIAL OF AUTOCHTHONOUS SACCHAROMYCES CEREVISIAE STRAINS AND THEIR EFFECT ON THE PRODUCTION OF TYPICAL SAVATIANO WINES

Due to the global demand for terroir wines, the winemaking industry has focused attention on exploiting the local yeast microflora of each wine growing region to express the regional character and enhance the sensory profile of wines such as varietal typicity and aroma complexity. The objective of the present study was to isolate and compare the indigenous strains of Saccharomyces cerevisiae present in different vineyards in the Mesogeia – Attiki wine region (Greece), evaluate their impact on chemical composition and sensory profile of Savatiano wines and select the most suitable ones for winemaking process.

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines.