terclim by ICS banner
IVES 9 IVES Conference Series 9 VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: LEVELS AND PATTERNS OBSERVED IN 2020 WINES FROM THE UNITED STATES WEST COAST

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: LEVELS AND PATTERNS OBSERVED IN 2020 WINES FROM THE UNITED STATES WEST COAST

Abstract

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors, described as “smoky”, “bacon”, “campfire” and “ashtray”, often long-lasting and lingering on the palate. In cases of large wildfire events, economic losses for all wine industry actors can be devastating.

In order to assess smoke impact, a selection of volatile and glycosylated smoke-derived phenols is pro-posed, mainly based on research from Australia (1, 2). It includes the volatile phenols guaiacol, 4-methyl-guaiacol, ortho-, meta- and para- cresol, phenol, syringol, and 4-methylsyringol, as well as their glycosylated forms guaiacol rutinoside, 4-methylguaiacol rutinoside, cresol rutinoside, phenol rutinoside, syringol gentiobioside, and 4-methylsyringol gentiobioside. The accurate and reproducible measurement of these markers is now possible worldwide, due to the commercial availability of standards and isotopic analogues.

The 2020 vintage has been particularly affected by wildfires all over the western part of the United States, giving us an opportunity to collect extensive data for this suite of markers in wines from smoke-exposed grapes.

In the large majority of cases, levels of both volatile and glycosylated markers in wines appeared closely related to the intensity of vineyard’s exposure to smoke. This confirmed the relevance of these markers in the western United States.

In some cases, however, volatile markers were relatively low, sometimes barely indicating any exposure to smoke, while glycosylated markers were high. This suggested very efficient glycosylation mechanisms in grapes and vines exposed to smoke.

We also observed opposite patterns, meaning high levels of volatile markers in combination with low levels of glycosylated markers. This may be the consequence of impaired glycosylation pathways in the plants, possibly related to a severe heat wave experienced in mid-August 2020.

These observations confirm that measuring both volatile and glycosylated markers is advisable in order to identify wines from smoke exposed grapes.

 

1. Hayasaka, Y., Parker, M., Baldock, G.A., Pardon, K.H., Black, C.A., Jeffery, D.W. and Herderich, M.J. (2013) Assessing the impact of smoke exposure in grapes: development and validation of a HPLC-MS/MS method for the quantitative analysis of smoke derived phenolic glycosides in grapes and wine. Journal of Agricultural and Food Chemistry 61, 25–33.
2. Krstic, M.P., Johnson, D.L. and Herderich, M.J. (2015) Review of smoke taint in wine: smoke-derived volatile phenols and their glycosidic metabolites in grapes and vines as biomarkers for smoke exposure and their role in the sensory perception of smoke taint. Australian Journal of Grape and Wine Research 21, 537–553.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Eric Hervé¹, Darren Gullick¹ , Azeem Hasan¹, Anindya Pradhan¹, Gordon Burns¹

smoke impact, volatile phenols, glycosylated phenols, wine

Contact the author*

Keywords

smoke impact, volatile phenols, glycosylated phenols, wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

SENSORY EVALUATION OF WINE AROMA: SHOULD COLOR-DRIVEN DESCRIPTORS BE USED?

The vocabulary used to describe wine aroma is commonly organized according to color, raising the question of whether they reflect the reality of olfactory perception. Previous studies have assumed this convention of color-aroma matching, and have investigated color’s influence on the perception of aroma only in dyed white wine or in red wine from particular places of origin. Here 48 white and red varietal wines from around the world were evaluated in black glasses then in clear glasses by a panel of wine experts, who gave intensity ratings for aroma attributes commonly used by wine professionals. In black glasses, aromas conventionally associated with white wine were perceived in the red wines, and vice versa.

AGING PATTERNS OF VARIETAL VOLATILE PROFILES OF WHITE WINES: A CASE STUDY ON 18 ITALIAN VARIETAL WHITE WINES

During wine aging many compositional changes take place. In particular, aroma undergoes dramatic modifications through a wide range of reactions that to date are only partly understood. Italy owns one of the largest ampelographic heritages worldwide, with over three-hundred different varieties. Among these, many white grapes are employed for the production of dry still white wines. Some of these wines are consumed young while others are more prone to aging. For many of these wines, the aging patterns related to volatile composition are still unknown.

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3].

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate.