terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

Abstract

The fresh mushroom off-flavour (FMOff) has been appearing in wines since the 2000s. Some C8 compounds such as 1-octen-3-one, 1-octen-3-ol, 1-hydroxyoctan-3-one, 3-octanol and others are invol-ved in this specific off-flavour [1-3]. At the same time, glycosidic precursors of some FMOff compounds have been identified in musts contaminated by Crustomyces subabruptus [4], highlighting the role of aroma precursors in this specific taint. However, the fate of these volatile molecules and glycosidic fractions during fermentation is not well known. The aim of this work was to study the effects of alcoholic fermentation by Saccharomyces cerevisae (Levuline CHP® strain) on FMOff glycosidic precursors and volatile compounds present in healthy and contaminated Pinot noir musts, using Crustomyces subabruptus as fungal infection. The volatile compounds of FMOff and the glycosidic fractions of the initial musts and the resulting wines were analysed by GC-MS. The analysis of glycosidic precursors revealed for the first time the presence of 1-hydroxyoctan-3-one glycosides only in the contaminated musts. In addition, the Levuline CHP® strain was able to release a 1-hydroxyoctan-3-one glycosidic fraction during alcoholic fermentation. For the volatile FMOff compounds, the effect of fermentation was both compound and matrix dependent. Indeed, both 1-octen-3-one and 3-octanone showed fluctuating evolution depending on the initial matrix. The 3-octanol was systematically produced during alcoholic fermentation whatever the initial matrix with concentrations reaching up to 0.35 µg/L and 0.58 µg/L under healthy and contaminated conditions respectively. Finally, 1-hydroxyoctan-3-one reached an identical threshold concentration (around 150 µg/L) whatever the type of matrix and regardless of its initial level. Interestingly, this compound plays a dual role as substrate and product for the yeast highlighting a potential metabolic node in the FMOff biogenesis.

 

1. Pons, M., et al., Identification of Impact Odorants Contributing to Fresh Mushroom Off-Flavor in Wines: Incidence of Their Reactivity with Nitrogen Compounds on the Decrease of the Olfactory Defect. Journal of Agricultural and Food Chemistry, 2011. 59(7): p. 3264-3272.
2. Darriet, P., et al., Impact Odorants Contributing to the Fungus Type Aroma from Grape Berries Contaminated by Powdery Mildew (Uncinula necator); Incidence of Enzymatic Activities of the Yeast Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 2002. 50(11): p. 3277-3282.
3. La Guerche, S., et al., Characterization of Some Mushroom and Earthy Off-Odors Microbially Induced by the Development of Rot on Grapes. Journal of Agricultural and Food Chemistry, 2006. 54(24): p. 9193-9200.
4. Delcros, L., et al., Identification of a Glycosylated Fraction Involved in Mushroom Off-Flavors in Grapes: Influence of Gray Rot, Powdery Mildew and Crustomyces subabruptus. Molecules, 2022. 27(21).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Léa Delcros1,2,3, Sylvie Collas2, Marion Hervé1, Bruno Blondin3, Aurélie Roland3*

1. MHCS, Epernay, France
2. Comité Champagne, Epernay, France
3. SPO, Univ Montpellier INRAE, Institut Agro, Montpellier, France

Contact the author*

Keywords

fresh mushroom off-flavor, alcoholic fermentation, 1-hydroxyoctan-3-one, glycosides

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

HAZE RISK ASSESSMENT OF MUSCAT MUSTS AND WINES : WHICH LABORATORY TEST ALLOWS A RELIABLE ESTIMATION OF THE HEATWAVE REALITY?

Wines made from Muscat d’Alexandria grapes exhibit a high haze risk. For this reason, they are systematically treated with bentonite, on the must and sometimes also on wine. In most oenological labora-tories and in companies (trade, cooperatives, independent winegrowers), the test that is by far the most widely used, on a worldwide scale, remains the heat test at 80°C for 30 minutes to 2 hours (and some-times up to 6 hours). The tannin test (sometimes coupled with a heat treatment) and the Bentotest are still used. In this study, we show that all these tests give much higher estimates of the haze risk than the risk assessed by a 24-48h treatment at 42°C, which represents a heat wave.

THE EFFECT OF COPPER ON THE PRODUCTION OF VARIETAL THIOLS DURING THE ALCOHOLIC FERMENTATION OF COLOMBARD AND GROS MANSENG GRAPE JUICES

Nowadays, the rapid growth of vineyards with organic practices and the use of copper as the only fun-gicide against downy mildew raises again the question of the effect of copper on varietal thiols in wine, especially 3-sulfanylhexan-1-ol (3SH) and its acetate (3SHA). A few decades ago, several works indicated that the use of copper in the vineyard had a negative effect on the content of varietal thiols in Sauvignon blanc wines [1, 2]. However, these studies only considered the concentration of the reduced form (RSH) of varietal thiols, without quantifying the oxidised ones. For this purpose, we proposed to monitor both reduced and oxidised forms of varietal thiols in wine under copper stress during alcoholic fermentation to have a more complete picture of the biological and chemical mechanisms.

Beyond liking scores: the importance of the drinking experience to understand our consumers

The presentation will approach the understanding of wine consumers´ perception based on the experiential model suggested by Warell (2008). In this framework, wine consumption gives rise to a
variety of experiences related to the perception, understanding, and judgment of the product. These
multidimensional facets of the drinking experience can be explored by measuring affective, cognitive,
and sensory responses of consumers, which are shown to be stable regardless of the social context.

IMPACT OF MINERAL AND ORGANIC NITROGEN ADDITION ON ALCOHOLIC FERMENTATION WITH S. CEREVISIAE

During alcoholic fermentation, nitrogen is one of essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of and wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (YAN) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species and leads to economic losses. Currently, grape musts are often characterized by low YAN concentration and an increase of sugars concentration due to global warming, making alcoholic fermentations even more difficult. YAN depletion can be corrected by addition of inorganic (ammonia) or organic (yeast derivatives products) nitrogen during alcoholic fermentation.