terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

Abstract

The fresh mushroom off-flavour (FMOff) has been appearing in wines since the 2000s. Some C8 compounds such as 1-octen-3-one, 1-octen-3-ol, 1-hydroxyoctan-3-one, 3-octanol and others are invol-ved in this specific off-flavour [1-3]. At the same time, glycosidic precursors of some FMOff compounds have been identified in musts contaminated by Crustomyces subabruptus [4], highlighting the role of aroma precursors in this specific taint. However, the fate of these volatile molecules and glycosidic fractions during fermentation is not well known. The aim of this work was to study the effects of alcoholic fermentation by Saccharomyces cerevisae (Levuline CHP® strain) on FMOff glycosidic precursors and volatile compounds present in healthy and contaminated Pinot noir musts, using Crustomyces subabruptus as fungal infection. The volatile compounds of FMOff and the glycosidic fractions of the initial musts and the resulting wines were analysed by GC-MS. The analysis of glycosidic precursors revealed for the first time the presence of 1-hydroxyoctan-3-one glycosides only in the contaminated musts. In addition, the Levuline CHP® strain was able to release a 1-hydroxyoctan-3-one glycosidic fraction during alcoholic fermentation. For the volatile FMOff compounds, the effect of fermentation was both compound and matrix dependent. Indeed, both 1-octen-3-one and 3-octanone showed fluctuating evolution depending on the initial matrix. The 3-octanol was systematically produced during alcoholic fermentation whatever the initial matrix with concentrations reaching up to 0.35 µg/L and 0.58 µg/L under healthy and contaminated conditions respectively. Finally, 1-hydroxyoctan-3-one reached an identical threshold concentration (around 150 µg/L) whatever the type of matrix and regardless of its initial level. Interestingly, this compound plays a dual role as substrate and product for the yeast highlighting a potential metabolic node in the FMOff biogenesis.

 

1. Pons, M., et al., Identification of Impact Odorants Contributing to Fresh Mushroom Off-Flavor in Wines: Incidence of Their Reactivity with Nitrogen Compounds on the Decrease of the Olfactory Defect. Journal of Agricultural and Food Chemistry, 2011. 59(7): p. 3264-3272.
2. Darriet, P., et al., Impact Odorants Contributing to the Fungus Type Aroma from Grape Berries Contaminated by Powdery Mildew (Uncinula necator); Incidence of Enzymatic Activities of the Yeast Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 2002. 50(11): p. 3277-3282.
3. La Guerche, S., et al., Characterization of Some Mushroom and Earthy Off-Odors Microbially Induced by the Development of Rot on Grapes. Journal of Agricultural and Food Chemistry, 2006. 54(24): p. 9193-9200.
4. Delcros, L., et al., Identification of a Glycosylated Fraction Involved in Mushroom Off-Flavors in Grapes: Influence of Gray Rot, Powdery Mildew and Crustomyces subabruptus. Molecules, 2022. 27(21).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Léa Delcros1,2,3, Sylvie Collas2, Marion Hervé1, Bruno Blondin3, Aurélie Roland3*

1. MHCS, Epernay, France
2. Comité Champagne, Epernay, France
3. SPO, Univ Montpellier INRAE, Institut Agro, Montpellier, France

Contact the author*

Keywords

fresh mushroom off-flavor, alcoholic fermentation, 1-hydroxyoctan-3-one, glycosides

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

DEVELOPMENT OF BIOPROSPECTING TOOLS FOR OENOLOGICAL APPLICATIONS

Wine production is a complex biochemical process that involves a heterogeneous microbiota consisting of different microorganisms such as yeasts, bacteria, and filamentous fungi. Among these microorganisms, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process that transforms the sugars in grapes into ethanol and carbon dioxide while producing additional by-products. The quality of the final product is greatly influenced by the microbiota present in the grape berry, and the demand for indigenous yeast starters adapted to specific grape must and reflecting the biodiversity of a particular region is increasing. This supports the concept that indigenous yeast strains can be associated with a “terroir”.

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.

NEW TREATMENTS FOR TEMPRANILLO WINES BY USING CABERNET SAUVIGNON VINE-SHOOTS AND MICRO-OXYGENATION

Toasted vine-shoots as enological additive represents a promising topic due to their significant effect on wine profile. However, the use of this new enological tool with SEGs varieties different than wine and combined with others winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far, despite this combination could result in wine with high chemical and organoleptic quality.

NEUROPROTECTIVE AND ANTI-INFLAMMATORY PROPERTIES OF HYDROXYTYROSOL: A PROMISING BIOACTIVE COMPONENT OF WINE

Hydroxytyrosol (HT) is a phenolic compound present in olives, virgin olive oil and wine. HT has attracted great scientific interest due to its biological activities which have been related with the ortho-dihydroxy conformation in the aromatic ring. In white and red wines, HT has been detected at concentrations ranging from 0.28 to 9.6 mg/L and its occurrence has been closely related with yeast metabolism of aromatic amino acids by Ehrlich pathway during alcoholic fermentation. One of the most promising properties of this compound is the neuroprotective activity against pathological mechanisms related with neurode-generative disorders including Alzheimer’s and Parkinson’s disease.