terclim by ICS banner
IVES 9 IVES Conference Series 9 OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

Abstract

The light exposure of wine can be detrimental as a relevant loss of aromas takes place [1] and light-induced reactions can occur. The latter involves riboflavin (RF), a photosensitive compound, that is fully reduced by acquiring two electrons. When the electron-donor is methionine, the light-struck taste (LST) can appear leading to cooked cabbage, onion and garlic odours-like [2]. The use of oenological tannins can limit the appearance of LST in both model wine [3] and white wine [4]. This research aimed to evaluate the impact of certain oenological tannins, selected in a previous study as the most effective against LST [5], in both white and rosé wines.
Six white wines and two rosé wines (5 still and 3 sparkling wines) produced in different vintages, were added with grape seed, tea and tara tannins (40 mg/L) at bottling or disgorgement. The wines were stored in the dark until the light exposure that was carried out under controlled condition [3] at bottling, and after 4 and 9 months of storage. Tannin-free wine samples were considered at each sampling point as control. The total flavonoids (FLVs), the color index (at 420 nm or 520 nm) and the content of RF were determined. The sensory analysis was also performed.
As expected, the addition of oenological tannins led to an increase of FLVs reaching the highest concentrations in the presence of tara tannins followed by tea tannins; a comparable content of FLVs was ob-served in control wines and those added with grape seed tannin. Only slight color index changes were found in the wines added with tannins. The light exposure did not affect neither FLVs nor the color index. In the samples stored in the dark, the content of RF ranged from about 50 μg/L (in 2 white sparkling wine samples) up to 130 μg/L that decreased when the wines were kept under light. The perception of bitterness and astringency was evident in particular with tara and grape seed tannins getting stronger especially in the 2 low-RF wine samples after the light exposure. A decrease of the overall aromatic profile was evidenced after the light exposure and LST was less perceived in the presence of tea tannins that seemed to limit aroma loss.
This study evidenced the impact of the wine on the light-induced fault that can have different wine-dependent facets and it seems of higher intensity in younger wines. Among the oenological tannins tasted, tea tannin was the most effective against LST and, in some cases, also in limiting the aroma decay.

 

1. Carlin S., Mattivi F., Durantini V., Dalledonne S., Arapitsas P. (2022). Flint glass bottles cause white wine aroma identity degradation. PNAS, 119, e2121940119 https://doi.org/10.1073/pnas.2121940119
2. Fracassetti D., Di Canito A., Bodon R., Messina N., Vigentini I., Foschino R., Tirelli A. (2021). Light-struck taste in white wine: Reaction mechanisms, preventive strategies and future perspectives to preserve wine quality. Trends in Food Science & Technology 112, 547-558. https://doi.org/10.1016/j.tifs.2021.04.013
3. Fracassetti D., Limbo S., Pellegrino L., Tirelli A. (2019). Light-induced reactions of methionine and riboflavin in model wine: Effects of hydrolysable tannins and sulfur dioxide. Food Chemistry, 2019, 298, 124952. https://doi.org/10.1016/j.food-chem.2019.124952
4. Fracassetti D., Limbo S., Messina N., Pellegrino L., Tirelli A. (2021). Light-struck taste in white wine: Protective role of glutathione, sulfur dioxide and hydrolysable tannins. Molecules 26, 5297. https://doi.org/10.3390/molecules26175297
5. Fracassetti D., Messina N., Saligari A., Tirelli A. (2023). Evaluation of oenological tannins for preventing the light-struck taste. Food Chemistry 404, 134563. https://doi.org/10.1016/j.foodchem.2022.134563

Acknowledgments The work was supported by European Agricultural Fund for Rural Development [Enofotoshield project; D.d.s. 1 luglio 2019 – n. 9551 , B.U. R.L. Serie Ordinaria n. 27 – 04 luglio 2019].

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Daniela Fracassetti1,*, Alessio Altomare1, Denis Allieri1, Antonio Tirelli1

1. Department of Food, Environmental and Nutritional Sciences (DeFENS), Universit. degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy

Contact the author*

Keywords

Riboflavin, Light exposure, Wine fault, Storage

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF NEW BIO STIMULANTS ON GRAPE SECONDARY METABOLITES UNDER CLIMATE CHANGE CONDITIONS

In a context of climate change and excessive use of agrochemical products, sustainable approaches for environmental and human health such as the use of bio stimulants in viticulture represent a potential option, against abiotic and biotic threats. Bio stimulants are organic compounds, microbes, or a combination of both, that stimulate plant’s vital processes, allowing high yields and good quality products. In vines, may trigger an innate immune response leading to the synthesis of secondary metabolites, key compounds for the organoleptic properties of grapes and wines.

EFFECTS OF INDUCED SUNBURN DAMAGES ON WHITE WINE PROPERTIES

Climate change is a great challenge for the environment and affects the wine industry as well. Sunburn damage of sensitive grapes increase with severe heat periods. Besides significant loss of yield sunburn, modifies sensory properties of the wines and may cause climate-related off-flavours. To initiate sunburn in a controlled way, in 2021 sunburn was directly induced in the vineyard with the GrapeBurner device, exposing grapes of the varieties Riesling and Pinot Blanc with UV and IR radiation. This device was first assembled by Kai Müller of the university in Geisenheim and consists of a carriage with 6 UV/IR lamps. A 15 min irradiation was applied in early September at 60°Oe. Due to the colder season in 2021 the grapes were not harmed by previous sunburn damage.

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.

PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

The wine industry worldwide faces more and more challenges due to climate change, such as increased dryness in some areas, water stress, sunburn and early harvesting during hot summer temperatures¹. One of the resulting problems for the wine quality might be a higher prevalence of the untypical aging off-flavor (ATA)². A substance, which Rapp and Versini made responsible for ATA, is the 2-aminoace-tophenone (2-AAP)³. 2-AAP in wine causes a naphthalene, wet towels, wet wool, acacia flower or just a soapy note⁴.

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.