terclim by ICS banner
IVES 9 IVES Conference Series 9 OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

Abstract

The light exposure of wine can be detrimental as a relevant loss of aromas takes place [1] and light-induced reactions can occur. The latter involves riboflavin (RF), a photosensitive compound, that is fully reduced by acquiring two electrons. When the electron-donor is methionine, the light-struck taste (LST) can appear leading to cooked cabbage, onion and garlic odours-like [2]. The use of oenological tannins can limit the appearance of LST in both model wine [3] and white wine [4]. This research aimed to evaluate the impact of certain oenological tannins, selected in a previous study as the most effective against LST [5], in both white and rosé wines.
Six white wines and two rosé wines (5 still and 3 sparkling wines) produced in different vintages, were added with grape seed, tea and tara tannins (40 mg/L) at bottling or disgorgement. The wines were stored in the dark until the light exposure that was carried out under controlled condition [3] at bottling, and after 4 and 9 months of storage. Tannin-free wine samples were considered at each sampling point as control. The total flavonoids (FLVs), the color index (at 420 nm or 520 nm) and the content of RF were determined. The sensory analysis was also performed.
As expected, the addition of oenological tannins led to an increase of FLVs reaching the highest concentrations in the presence of tara tannins followed by tea tannins; a comparable content of FLVs was ob-served in control wines and those added with grape seed tannin. Only slight color index changes were found in the wines added with tannins. The light exposure did not affect neither FLVs nor the color index. In the samples stored in the dark, the content of RF ranged from about 50 μg/L (in 2 white sparkling wine samples) up to 130 μg/L that decreased when the wines were kept under light. The perception of bitterness and astringency was evident in particular with tara and grape seed tannins getting stronger especially in the 2 low-RF wine samples after the light exposure. A decrease of the overall aromatic profile was evidenced after the light exposure and LST was less perceived in the presence of tea tannins that seemed to limit aroma loss.
This study evidenced the impact of the wine on the light-induced fault that can have different wine-dependent facets and it seems of higher intensity in younger wines. Among the oenological tannins tasted, tea tannin was the most effective against LST and, in some cases, also in limiting the aroma decay.

 

1. Carlin S., Mattivi F., Durantini V., Dalledonne S., Arapitsas P. (2022). Flint glass bottles cause white wine aroma identity degradation. PNAS, 119, e2121940119 https://doi.org/10.1073/pnas.2121940119
2. Fracassetti D., Di Canito A., Bodon R., Messina N., Vigentini I., Foschino R., Tirelli A. (2021). Light-struck taste in white wine: Reaction mechanisms, preventive strategies and future perspectives to preserve wine quality. Trends in Food Science & Technology 112, 547-558. https://doi.org/10.1016/j.tifs.2021.04.013
3. Fracassetti D., Limbo S., Pellegrino L., Tirelli A. (2019). Light-induced reactions of methionine and riboflavin in model wine: Effects of hydrolysable tannins and sulfur dioxide. Food Chemistry, 2019, 298, 124952. https://doi.org/10.1016/j.food-chem.2019.124952
4. Fracassetti D., Limbo S., Messina N., Pellegrino L., Tirelli A. (2021). Light-struck taste in white wine: Protective role of glutathione, sulfur dioxide and hydrolysable tannins. Molecules 26, 5297. https://doi.org/10.3390/molecules26175297
5. Fracassetti D., Messina N., Saligari A., Tirelli A. (2023). Evaluation of oenological tannins for preventing the light-struck taste. Food Chemistry 404, 134563. https://doi.org/10.1016/j.foodchem.2022.134563

Acknowledgments The work was supported by European Agricultural Fund for Rural Development [Enofotoshield project; D.d.s. 1 luglio 2019 – n. 9551 , B.U. R.L. Serie Ordinaria n. 27 – 04 luglio 2019].

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Daniela Fracassetti1,*, Alessio Altomare1, Denis Allieri1, Antonio Tirelli1

1. Department of Food, Environmental and Nutritional Sciences (DeFENS), Universit. degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy

Contact the author*

Keywords

Riboflavin, Light exposure, Wine fault, Storage

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EXTRACTIBLE COMPOUNDS FROM MICROAGGLOMERATED CORK STOPPERS

After bottling, the wine continues to evolve during storage. The choice of the stopper is an important factor in this evolution. In addition to the oxygen permeability of the closure, the migration of stopper compounds into the wine can also have an impact on the wine organoleptic properties. Many studies have shown that transfers of volatile compounds from the stoppers into the wine can happen depending on the type of closure used (1). Moreover, when cork-made stoppers are used, the migration of phenolic compounds from the stopper into the wine can also occur (2, 3).

METABOLIC INTERACTIONS OF SACCHAROMYCES CEREVISIAE COCULTURES: A WAY TO EXTEND THE AROMA DIVERSITY OF CHARDONNAY WINE

Yeast co-inoculations in winemaking have been investigated in various applications, but most often in the context of modulating the aromatic profiles of wines. Our study aimed to characterize S. cerevisiae interactions and their impact on wine by taking an integrative approach. Three cocultures and corresponding pure cultures of S. cerevisiae were characterized according to their fermentative capacities, the chemical composition and aromatic profile of the associated Chardonnay wines. The various strains studied within the cocultures showed different behaviors regarding their development.

POTENTIAL DEACIDIFYING ROLE OF A COMMERCIAL CHITOSAN: IMPACT ON PH, TITRATABLE ACIDITY, AND ORGANIC ACIDS IN MODEL SOLUTIONS AND WHITE WINE

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps. The main derivative of chitin is chitosan (CH), produced by N-deacetylation of chitin in alkaline solutions. Over the past decade, the OIV/OENO 338A/ 2009 resolution approved the addition of allergen-free fungoid CH to must and wine as an adjuvant for microbiological control, prevention of haziness, metals chelation and ochratoxins removal (European Commission. 2011). Despite several studies on application of CH in winemaking, there are still very limited and controversial data on its interaction with acidic components in wine (Colan-gelo et al., 2018; Castro Marin et al., 2021).

VOLATILE, PHENOLIC AND COLORIMETRIC CHARACTERIZATION OF THREE DIFFERENT LAMBRUSCO APPELLATIONS

Lambrusco is a commercially successful sparkling red and rosé wine. With 13.06 million litres sold in 2021 was the second best-selling Italian wine after Chianti. According to National Catalogue of Vine Varieties there are thirteen Lambrusco Varieties with which to date are produced seven PDO wines. Among these, “Lambrusco Salamino di Santa Croce”, “Lambrusco Grasparossa di Castelvetro” and “Lambrusco di Sorbara” are the only ones that can be considered mono-varietal appellations, all located in Modena area. The PDOs contemplate the possibility of producing wines by secondary fermentation either in tank (Charmat method), or in bottle (Classico method). Sur lie is a third method commonly employed for Lambrusco, similar to the Classico method, from which differs for the absence of disgorgement.

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).