terclim by ICS banner
IVES 9 IVES Conference Series 9 OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

Abstract

The light exposure of wine can be detrimental as a relevant loss of aromas takes place [1] and light-induced reactions can occur. The latter involves riboflavin (RF), a photosensitive compound, that is fully reduced by acquiring two electrons. When the electron-donor is methionine, the light-struck taste (LST) can appear leading to cooked cabbage, onion and garlic odours-like [2]. The use of oenological tannins can limit the appearance of LST in both model wine [3] and white wine [4]. This research aimed to evaluate the impact of certain oenological tannins, selected in a previous study as the most effective against LST [5], in both white and rosé wines.
Six white wines and two rosé wines (5 still and 3 sparkling wines) produced in different vintages, were added with grape seed, tea and tara tannins (40 mg/L) at bottling or disgorgement. The wines were stored in the dark until the light exposure that was carried out under controlled condition [3] at bottling, and after 4 and 9 months of storage. Tannin-free wine samples were considered at each sampling point as control. The total flavonoids (FLVs), the color index (at 420 nm or 520 nm) and the content of RF were determined. The sensory analysis was also performed.
As expected, the addition of oenological tannins led to an increase of FLVs reaching the highest concentrations in the presence of tara tannins followed by tea tannins; a comparable content of FLVs was ob-served in control wines and those added with grape seed tannin. Only slight color index changes were found in the wines added with tannins. The light exposure did not affect neither FLVs nor the color index. In the samples stored in the dark, the content of RF ranged from about 50 μg/L (in 2 white sparkling wine samples) up to 130 μg/L that decreased when the wines were kept under light. The perception of bitterness and astringency was evident in particular with tara and grape seed tannins getting stronger especially in the 2 low-RF wine samples after the light exposure. A decrease of the overall aromatic profile was evidenced after the light exposure and LST was less perceived in the presence of tea tannins that seemed to limit aroma loss.
This study evidenced the impact of the wine on the light-induced fault that can have different wine-dependent facets and it seems of higher intensity in younger wines. Among the oenological tannins tasted, tea tannin was the most effective against LST and, in some cases, also in limiting the aroma decay.

 

1. Carlin S., Mattivi F., Durantini V., Dalledonne S., Arapitsas P. (2022). Flint glass bottles cause white wine aroma identity degradation. PNAS, 119, e2121940119 https://doi.org/10.1073/pnas.2121940119
2. Fracassetti D., Di Canito A., Bodon R., Messina N., Vigentini I., Foschino R., Tirelli A. (2021). Light-struck taste in white wine: Reaction mechanisms, preventive strategies and future perspectives to preserve wine quality. Trends in Food Science & Technology 112, 547-558. https://doi.org/10.1016/j.tifs.2021.04.013
3. Fracassetti D., Limbo S., Pellegrino L., Tirelli A. (2019). Light-induced reactions of methionine and riboflavin in model wine: Effects of hydrolysable tannins and sulfur dioxide. Food Chemistry, 2019, 298, 124952. https://doi.org/10.1016/j.food-chem.2019.124952
4. Fracassetti D., Limbo S., Messina N., Pellegrino L., Tirelli A. (2021). Light-struck taste in white wine: Protective role of glutathione, sulfur dioxide and hydrolysable tannins. Molecules 26, 5297. https://doi.org/10.3390/molecules26175297
5. Fracassetti D., Messina N., Saligari A., Tirelli A. (2023). Evaluation of oenological tannins for preventing the light-struck taste. Food Chemistry 404, 134563. https://doi.org/10.1016/j.foodchem.2022.134563

Acknowledgments The work was supported by European Agricultural Fund for Rural Development [Enofotoshield project; D.d.s. 1 luglio 2019 – n. 9551 , B.U. R.L. Serie Ordinaria n. 27 – 04 luglio 2019].

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Daniela Fracassetti1,*, Alessio Altomare1, Denis Allieri1, Antonio Tirelli1

1. Department of Food, Environmental and Nutritional Sciences (DeFENS), Universit. degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy

Contact the author*

Keywords

Riboflavin, Light exposure, Wine fault, Storage

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.

PINKING PHENOMENA ON WHITE WINES: RELATION BETWEEN PINKING SUSCEPTIBILITY INDEX (PSI) AND WINE ANTHOCYANINS CONTENT

Pinking is the emergence of pink tones in white wines exclusively produced from white grape varieties, known as pinking phenomena for many years. Pinking is essentially appeared when white wines are produced under reducing conditions [1,2,3]. Pinking usually occurs after bottling and storage of white wines, but its appearance has also been described after alcoholic fermentation or even as soon as the grape must is extracted [4]. Therefore, the purpose of this work was to investigate the existence of an-thocyanins in white wines made from different white grape varieties and grown locations and critically evaluate the most common method used for predicting pinking appearance in white wines: the Pinking Susceptibility Index (PSI).

PERCEPTUAL INTERACTIONS PHENOMENA INVOLVING VARIOUS VOLATILE COMPOUND FAMILIES LINKED TO SOME FRUITY NOTES IN BORDEAUX RED WINES

Fruity notes play a key role in the consumer’s appreciation of Bordeaux red wines. If literature provides a lot of knowledge about the nature of volatile compounds involved in this fruity expression, the sensory phenomena involving these compounds in mixture still need to be explored. Considering previous sensory works about the impact of esters and some overripening compounds, the goal of this work was to study the implication of perceptual interactions involving red wine odorant compounds of diverse origins and described as potentially affecting fruity aromatic expression.

GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

Port is a fortified wine, produced from grapes grown in the demarcated Douro region. The fortification process consists in the addition of a grape spirit (77% v/v) to the fermenting juice for fermentation interruption, resulting in remaining residual sugars in the wine and increased alcohol content (19-22%). The approval of grape spirits follows the Appellation (D.O. Port wine) rules1 and it is currently carried out based on analytical control and on sensory evaluation done by the public Institute that upholds the control of the quality of Douro Appellation wines. However, the producers of Port wines would like to have more information about quality markers of grape spirits.

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well.