terclim by ICS banner
IVES 9 IVES Conference Series 9 OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

Abstract

The light exposure of wine can be detrimental as a relevant loss of aromas takes place [1] and light-induced reactions can occur. The latter involves riboflavin (RF), a photosensitive compound, that is fully reduced by acquiring two electrons. When the electron-donor is methionine, the light-struck taste (LST) can appear leading to cooked cabbage, onion and garlic odours-like [2]. The use of oenological tannins can limit the appearance of LST in both model wine [3] and white wine [4]. This research aimed to evaluate the impact of certain oenological tannins, selected in a previous study as the most effective against LST [5], in both white and rosé wines.
Six white wines and two rosé wines (5 still and 3 sparkling wines) produced in different vintages, were added with grape seed, tea and tara tannins (40 mg/L) at bottling or disgorgement. The wines were stored in the dark until the light exposure that was carried out under controlled condition [3] at bottling, and after 4 and 9 months of storage. Tannin-free wine samples were considered at each sampling point as control. The total flavonoids (FLVs), the color index (at 420 nm or 520 nm) and the content of RF were determined. The sensory analysis was also performed.
As expected, the addition of oenological tannins led to an increase of FLVs reaching the highest concentrations in the presence of tara tannins followed by tea tannins; a comparable content of FLVs was ob-served in control wines and those added with grape seed tannin. Only slight color index changes were found in the wines added with tannins. The light exposure did not affect neither FLVs nor the color index. In the samples stored in the dark, the content of RF ranged from about 50 μg/L (in 2 white sparkling wine samples) up to 130 μg/L that decreased when the wines were kept under light. The perception of bitterness and astringency was evident in particular with tara and grape seed tannins getting stronger especially in the 2 low-RF wine samples after the light exposure. A decrease of the overall aromatic profile was evidenced after the light exposure and LST was less perceived in the presence of tea tannins that seemed to limit aroma loss.
This study evidenced the impact of the wine on the light-induced fault that can have different wine-dependent facets and it seems of higher intensity in younger wines. Among the oenological tannins tasted, tea tannin was the most effective against LST and, in some cases, also in limiting the aroma decay.

 

1. Carlin S., Mattivi F., Durantini V., Dalledonne S., Arapitsas P. (2022). Flint glass bottles cause white wine aroma identity degradation. PNAS, 119, e2121940119 https://doi.org/10.1073/pnas.2121940119
2. Fracassetti D., Di Canito A., Bodon R., Messina N., Vigentini I., Foschino R., Tirelli A. (2021). Light-struck taste in white wine: Reaction mechanisms, preventive strategies and future perspectives to preserve wine quality. Trends in Food Science & Technology 112, 547-558. https://doi.org/10.1016/j.tifs.2021.04.013
3. Fracassetti D., Limbo S., Pellegrino L., Tirelli A. (2019). Light-induced reactions of methionine and riboflavin in model wine: Effects of hydrolysable tannins and sulfur dioxide. Food Chemistry, 2019, 298, 124952. https://doi.org/10.1016/j.food-chem.2019.124952
4. Fracassetti D., Limbo S., Messina N., Pellegrino L., Tirelli A. (2021). Light-struck taste in white wine: Protective role of glutathione, sulfur dioxide and hydrolysable tannins. Molecules 26, 5297. https://doi.org/10.3390/molecules26175297
5. Fracassetti D., Messina N., Saligari A., Tirelli A. (2023). Evaluation of oenological tannins for preventing the light-struck taste. Food Chemistry 404, 134563. https://doi.org/10.1016/j.foodchem.2022.134563

Acknowledgments The work was supported by European Agricultural Fund for Rural Development [Enofotoshield project; D.d.s. 1 luglio 2019 – n. 9551 , B.U. R.L. Serie Ordinaria n. 27 – 04 luglio 2019].

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Daniela Fracassetti1,*, Alessio Altomare1, Denis Allieri1, Antonio Tirelli1

1. Department of Food, Environmental and Nutritional Sciences (DeFENS), Universit. degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy

Contact the author*

Keywords

Riboflavin, Light exposure, Wine fault, Storage

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.

EFFECT OF FERMENTATION TEMPERATURE GRADIENT AND SKIN CONTACT ON ESTER AND THIOL PRODUCTION AND TROPICAL FRUIT PERCEPTION IN CHARDONNAY WINES

Wines with tropical fruit aromas have become increasingly more available1,2. With increased availability of different wine styles, it has become important to understand the compounds that cause the fruity aromas in wine. Previous work using micro fermentations showed that fermentation temperature gradients and time on skins resulted in an increase in thiol and ester compounds post fermentation and these compounds are known to cause tropical fruit aroma in wines³. This work aimed to scale up these fermentations/operations to determine if the desired aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

OENOLOGICAL POTENTIAL OF AUTOCHTHONOUS SACCHAROMYCES CEREVISIAE STRAINS AND THEIR EFFECT ON THE PRODUCTION OF TYPICAL SAVATIANO WINES

Due to the global demand for terroir wines, the winemaking industry has focused attention on exploiting the local yeast microflora of each wine growing region to express the regional character and enhance the sensory profile of wines such as varietal typicity and aroma complexity. The objective of the present study was to isolate and compare the indigenous strains of Saccharomyces cerevisiae present in different vineyards in the Mesogeia – Attiki wine region (Greece), evaluate their impact on chemical composition and sensory profile of Savatiano wines and select the most suitable ones for winemaking process.

REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

Nitrogen (N) fertilizer is important for grape growth and the quality of wine. It is essential to address the mismatch between N application and wine composition. Cabernet Gernischt (Vitis vinifera L.), as one of the main wine-grape cultivars in China, was introduced to Yantai wine region in 1892. This grape cultivar is traditionally used for quality dry red wine with fruit, spices aroma, ruby red and full-bodied wines. In order to regulate vine growth and improve grape and wine quality, Cabernet Gernischt grapevines were subjected to decreased levels of N treatments, compared to normal N supply treatment, during grape growing seasons of 2019 and 2020.

IMPACT OF FINING WITH K-CARRAGEENAN, BENTONITE, AND CHITOSAN ON PROTEIN STABILITY AND MACROMOLECULAR COMPOUNDS OF ALBARIÑO WHITE WINE PRODUCED WITH AND WITHOUT PRE-FERMENTATIVE SKIN MACERATION

Pre-fermentative skin maceration is a technique used in white wine production to enhance varietal aroma, but it can increase protein concentration, leading to protein instability and haze formation [1]. To prevent protein instability, wine producers typically use fining agents such as bentonite, before wine bottling, which can negatively impact sensory characteristics and produce waste [2,3]. The aim of this study was to understand the impact of alternative techniques such as the application of polysaccharides (k-carrageenan and chitosan) on protein stability and on the wine macromolecular composition.