terclim by ICS banner
IVES 9 IVES Conference Series 9 PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

Abstract

The wine industry worldwide faces more and more challenges due to climate change, such as increased dryness in some areas, water stress, sunburn and early harvesting during hot summer temperatures¹. One of the resulting problems for the wine quality might be a higher prevalence of the untypical aging off-flavor (ATA)². A substance, which Rapp and Versini made responsible for ATA, is the 2-aminoace-tophenone (2-AAP)³. 2-AAP in wine causes a naphthalene, wet towels, wet wool, acacia flower or just a soapy note⁴. The formation of the substance occurs via the degradation of tryptophan and the trypto-phan metabolite indole-3-acetic acid. The formation of 2-AAP is promoted by abiotic stress factors such as drought, low nitrogen content and high temperature, and by microorganisms via riboflavin, known as a photosensitizer5. In this study, the influence of other abiotic factors, namely oxygen and heavy me-tals, on the light-induced degradation of tryptophan to 2-AAP was investigated. Model wine with 0.53 µmol/l riboflavin was treated with UV-C light to stimulate tryptophan degradation. A linear increase in the intensity of UV-C light exposure caused a linear increase of 2-AAP. Increasing oxygen in the model wine supported the production of 2-AAP verifying that tryptophan degradation via riboflavin follows an oxidative pathway. Indeed, 2-AAP production decreased by 81 % when oxygen was reduced from saturation to anoxic conditions. It was also found that the presence of heavy metals led to a significant reduction of 2-AAP: 0.1 mmol/l Fe²+ decreased 2-AAP by 63 %, and 0.1 mmol/l Cu²+ decreased 2-AAP by 32 %. This observation can be explained by the Fenton reaction which requires Fe²+ and/or Cu²+ to produce – in this case – acetaldehyde from ethanol. It is suggested that the Fenton reaction acts as a competitive reaction to the photosensitized production of 2-AAP. As a lateral observation, the model wine in this study turned yellow after being UV-C radiated. The LC-MS signal suggested the substance lumichrome; its signal increased with the more yellow color of the model wine. Accordingly, riboflavin could not only act as a photosensitizer but also degrade itself after exposure to light.

 

1. Santos, J. A. et al. (2020). A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Applied Sciences, 10(9), 3092. https://doi.org/10.3390/app10093092
2. van Leeuwen, C. et al. (2020). Recent advancements in understanding the terroir effect on aromas in grapes and wines. OENO One, 54(2). https://doi.org/10.20870/oeno-one.2020.54.4.3983 
3. Rapp, A., Versini, V., Ullemeyer, H. (1993). 2-aminoacetophenone: Causal component of ‘untypical aging flavour’ (‘naphthale-ne note’, ‘hybrid note’) of wine. Vitis, 32(1), 61-62. https://doi.org/10.5073/vitis.1993.32.61-62
4. Alpeza, I. et al. (2021). Atypical aging off-flavour and relation between sensory recognition and 2-aminoacetophenone in Croatian wines. Journal of Central European Agriculture, 22(2), 408-419. https://doi.org/10.5513/JCEA01/22.2.3103
5. Hühn, T. et al. (1999). Release of undesired aroma compound from plant hormones during alcoholic fermentation. Vitiv. Enol. Sci., 54, 105-113.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Svetlana Cvetkova¹, Sarah Edinger¹, Daniel Zimmermann¹ und Dominik Durner¹

1. Weincampus Neustadt/DLR Rheinpfalz, Institute for Viticulture and Enology, Breitenweg 71, D-67435 Neustadt an der Weinstraße, Germany

Contact the author*

Keywords

2-aminoacetophenone, iron, oxygen, riboflavin

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

In recent years characterized by hot dry summers, the implementation of innovative irrigation tools in the vineyard represents a crucial challenge to ensure optimal production and to avoid excess of water consumption. It is known that the grapevine reacts to multiple stresses – i.e., high temperatures and wa- ter shortage – through adaptive mechanisms that are detrimental to the yield. Furthermore, this condi- tion is usually aggravated by high solar radiation, which could negatively affect the phenolic composi- tion of the grapes. Therefore, a cooling system has been developed aiming to reduce bunches’ sunburn damage.

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermen- tation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

Planting grape varieties with several resistance loci towards powdery and downy mildew reduces the use of fungicides significantly. These fungus resistant or PIWI varieties (acronym of German Pilzwiderstandsfähig) contribute significantly to the 50% pesticide reduction goal, set by the European Green Deal for 2030. However, wine growers hesitate to plant PIWIs as they lack experience in vinification and are uncertain, how consumer accept and buy wines from these yet mostly unknown varieties. Grapes from four white and three red PIWI varieties were vinified in three vintages to obtain four diffe-rent white and red wine styles, respectively plus one rosé.

2-YEARS STUDY ON COMPARISON BETWEEN THE VOLATILE CHEMICAL PROFILE OF TWO DIFFERENT BLENDS FOR THE ENHANCEMENT OF “VALPOLICELLA SUPERIORE”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest.