terclim by ICS banner
IVES 9 IVES Conference Series 9 PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

Abstract

The wine industry worldwide faces more and more challenges due to climate change, such as increased dryness in some areas, water stress, sunburn and early harvesting during hot summer temperatures¹. One of the resulting problems for the wine quality might be a higher prevalence of the untypical aging off-flavor (ATA)². A substance, which Rapp and Versini made responsible for ATA, is the 2-aminoace-tophenone (2-AAP)³. 2-AAP in wine causes a naphthalene, wet towels, wet wool, acacia flower or just a soapy note⁴. The formation of the substance occurs via the degradation of tryptophan and the trypto-phan metabolite indole-3-acetic acid. The formation of 2-AAP is promoted by abiotic stress factors such as drought, low nitrogen content and high temperature, and by microorganisms via riboflavin, known as a photosensitizer5. In this study, the influence of other abiotic factors, namely oxygen and heavy me-tals, on the light-induced degradation of tryptophan to 2-AAP was investigated. Model wine with 0.53 µmol/l riboflavin was treated with UV-C light to stimulate tryptophan degradation. A linear increase in the intensity of UV-C light exposure caused a linear increase of 2-AAP. Increasing oxygen in the model wine supported the production of 2-AAP verifying that tryptophan degradation via riboflavin follows an oxidative pathway. Indeed, 2-AAP production decreased by 81 % when oxygen was reduced from saturation to anoxic conditions. It was also found that the presence of heavy metals led to a significant reduction of 2-AAP: 0.1 mmol/l Fe²+ decreased 2-AAP by 63 %, and 0.1 mmol/l Cu²+ decreased 2-AAP by 32 %. This observation can be explained by the Fenton reaction which requires Fe²+ and/or Cu²+ to produce – in this case – acetaldehyde from ethanol. It is suggested that the Fenton reaction acts as a competitive reaction to the photosensitized production of 2-AAP. As a lateral observation, the model wine in this study turned yellow after being UV-C radiated. The LC-MS signal suggested the substance lumichrome; its signal increased with the more yellow color of the model wine. Accordingly, riboflavin could not only act as a photosensitizer but also degrade itself after exposure to light.

 

1. Santos, J. A. et al. (2020). A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Applied Sciences, 10(9), 3092. https://doi.org/10.3390/app10093092
2. van Leeuwen, C. et al. (2020). Recent advancements in understanding the terroir effect on aromas in grapes and wines. OENO One, 54(2). https://doi.org/10.20870/oeno-one.2020.54.4.3983 
3. Rapp, A., Versini, V., Ullemeyer, H. (1993). 2-aminoacetophenone: Causal component of ‘untypical aging flavour’ (‘naphthale-ne note’, ‘hybrid note’) of wine. Vitis, 32(1), 61-62. https://doi.org/10.5073/vitis.1993.32.61-62
4. Alpeza, I. et al. (2021). Atypical aging off-flavour and relation between sensory recognition and 2-aminoacetophenone in Croatian wines. Journal of Central European Agriculture, 22(2), 408-419. https://doi.org/10.5513/JCEA01/22.2.3103
5. Hühn, T. et al. (1999). Release of undesired aroma compound from plant hormones during alcoholic fermentation. Vitiv. Enol. Sci., 54, 105-113.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Svetlana Cvetkova¹, Sarah Edinger¹, Daniel Zimmermann¹ und Dominik Durner¹

1. Weincampus Neustadt/DLR Rheinpfalz, Institute for Viticulture and Enology, Breitenweg 71, D-67435 Neustadt an der Weinstraße, Germany

Contact the author*

Keywords

2-aminoacetophenone, iron, oxygen, riboflavin

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate.

IMPACT OF NEW BIO STIMULANTS ON GRAPE SECONDARY METABOLITES UNDER CLIMATE CHANGE CONDITIONS

In a context of climate change and excessive use of agrochemical products, sustainable approaches for environmental and human health such as the use of bio stimulants in viticulture represent a potential option, against abiotic and biotic threats. Bio stimulants are organic compounds, microbes, or a combination of both, that stimulate plant’s vital processes, allowing high yields and good quality products. In vines, may trigger an innate immune response leading to the synthesis of secondary metabolites, key compounds for the organoleptic properties of grapes and wines.

AGING PATTERNS OF VARIETAL VOLATILE PROFILES OF WHITE WINES: A CASE STUDY ON 18 ITALIAN VARIETAL WHITE WINES

During wine aging many compositional changes take place. In particular, aroma undergoes dramatic modifications through a wide range of reactions that to date are only partly understood. Italy owns one of the largest ampelographic heritages worldwide, with over three-hundred different varieties. Among these, many white grapes are employed for the production of dry still white wines. Some of these wines are consumed young while others are more prone to aging. For many of these wines, the aging patterns related to volatile composition are still unknown.

MICROFLUIDIC PLATFORM FOR SORTING YEAST CELLS ACCORDING TO THEIR MORPHOLOGY

In this work we briefly present a microfluidic device aiming to sort yeast cells according to their morphology. The technology is based upon microfluidic chips made out of Polydimethylsiloxane and glass using soft lithography processes and replica molding. The microfluidic device was used for encapsulating single yeast cells in liquid droplets containing growth medium. Liquid droplet containing yeast cells were sorted using a real time imaging and decision-making process.

AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

In recent years characterized by hot dry summers, the implementation of innovative irrigation tools in the vineyard represents a crucial challenge to ensure optimal production and to avoid excess of water consumption. It is known that the grapevine reacts to multiple stresses – i.e., high temperatures and wa- ter shortage – through adaptive mechanisms that are detrimental to the yield. Furthermore, this condi- tion is usually aggravated by high solar radiation, which could negatively affect the phenolic composi- tion of the grapes. Therefore, a cooling system has been developed aiming to reduce bunches’ sunburn damage.