terclim by ICS banner
IVES 9 IVES Conference Series 9 PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

Abstract

The wine industry worldwide faces more and more challenges due to climate change, such as increased dryness in some areas, water stress, sunburn and early harvesting during hot summer temperatures¹. One of the resulting problems for the wine quality might be a higher prevalence of the untypical aging off-flavor (ATA)². A substance, which Rapp and Versini made responsible for ATA, is the 2-aminoace-tophenone (2-AAP)³. 2-AAP in wine causes a naphthalene, wet towels, wet wool, acacia flower or just a soapy note⁴. The formation of the substance occurs via the degradation of tryptophan and the trypto-phan metabolite indole-3-acetic acid. The formation of 2-AAP is promoted by abiotic stress factors such as drought, low nitrogen content and high temperature, and by microorganisms via riboflavin, known as a photosensitizer5. In this study, the influence of other abiotic factors, namely oxygen and heavy me-tals, on the light-induced degradation of tryptophan to 2-AAP was investigated. Model wine with 0.53 µmol/l riboflavin was treated with UV-C light to stimulate tryptophan degradation. A linear increase in the intensity of UV-C light exposure caused a linear increase of 2-AAP. Increasing oxygen in the model wine supported the production of 2-AAP verifying that tryptophan degradation via riboflavin follows an oxidative pathway. Indeed, 2-AAP production decreased by 81 % when oxygen was reduced from saturation to anoxic conditions. It was also found that the presence of heavy metals led to a significant reduction of 2-AAP: 0.1 mmol/l Fe²+ decreased 2-AAP by 63 %, and 0.1 mmol/l Cu²+ decreased 2-AAP by 32 %. This observation can be explained by the Fenton reaction which requires Fe²+ and/or Cu²+ to produce – in this case – acetaldehyde from ethanol. It is suggested that the Fenton reaction acts as a competitive reaction to the photosensitized production of 2-AAP. As a lateral observation, the model wine in this study turned yellow after being UV-C radiated. The LC-MS signal suggested the substance lumichrome; its signal increased with the more yellow color of the model wine. Accordingly, riboflavin could not only act as a photosensitizer but also degrade itself after exposure to light.

 

1. Santos, J. A. et al. (2020). A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Applied Sciences, 10(9), 3092. https://doi.org/10.3390/app10093092
2. van Leeuwen, C. et al. (2020). Recent advancements in understanding the terroir effect on aromas in grapes and wines. OENO One, 54(2). https://doi.org/10.20870/oeno-one.2020.54.4.3983 
3. Rapp, A., Versini, V., Ullemeyer, H. (1993). 2-aminoacetophenone: Causal component of ‘untypical aging flavour’ (‘naphthale-ne note’, ‘hybrid note’) of wine. Vitis, 32(1), 61-62. https://doi.org/10.5073/vitis.1993.32.61-62
4. Alpeza, I. et al. (2021). Atypical aging off-flavour and relation between sensory recognition and 2-aminoacetophenone in Croatian wines. Journal of Central European Agriculture, 22(2), 408-419. https://doi.org/10.5513/JCEA01/22.2.3103
5. Hühn, T. et al. (1999). Release of undesired aroma compound from plant hormones during alcoholic fermentation. Vitiv. Enol. Sci., 54, 105-113.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Svetlana Cvetkova¹, Sarah Edinger¹, Daniel Zimmermann¹ und Dominik Durner¹

1. Weincampus Neustadt/DLR Rheinpfalz, Institute for Viticulture and Enology, Breitenweg 71, D-67435 Neustadt an der Weinstraße, Germany

Contact the author*

Keywords

2-aminoacetophenone, iron, oxygen, riboflavin

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

POTENTIAL DEACIDIFYING ROLE OF A COMMERCIAL CHITOSAN: IMPACT ON PH, TITRATABLE ACIDITY, AND ORGANIC ACIDS IN MODEL SOLUTIONS AND WHITE WINE

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps. The main derivative of chitin is chitosan (CH), produced by N-deacetylation of chitin in alkaline solutions. Over the past decade, the OIV/OENO 338A/ 2009 resolution approved the addition of allergen-free fungoid CH to must and wine as an adjuvant for microbiological control, prevention of haziness, metals chelation and ochratoxins removal (European Commission. 2011). Despite several studies on application of CH in winemaking, there are still very limited and controversial data on its interaction with acidic components in wine (Colan-gelo et al., 2018; Castro Marin et al., 2021).

AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

In recent years characterized by hot dry summers, the implementation of innovative irrigation tools in the vineyard represents a crucial challenge to ensure optimal production and to avoid excess of water consumption. It is known that the grapevine reacts to multiple stresses – i.e., high temperatures and wa- ter shortage – through adaptive mechanisms that are detrimental to the yield. Furthermore, this condi- tion is usually aggravated by high solar radiation, which could negatively affect the phenolic composi- tion of the grapes. Therefore, a cooling system has been developed aiming to reduce bunches’ sunburn damage.

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.

VOLATILE, PHENOLIC AND COLORIMETRIC CHARACTERIZATION OF THREE DIFFERENT LAMBRUSCO APPELLATIONS

Lambrusco is a commercially successful sparkling red and rosé wine. With 13.06 million litres sold in 2021 was the second best-selling Italian wine after Chianti. According to National Catalogue of Vine Varieties there are thirteen Lambrusco Varieties with which to date are produced seven PDO wines. Among these, “Lambrusco Salamino di Santa Croce”, “Lambrusco Grasparossa di Castelvetro” and “Lambrusco di Sorbara” are the only ones that can be considered mono-varietal appellations, all located in Modena area. The PDOs contemplate the possibility of producing wines by secondary fermentation either in tank (Charmat method), or in bottle (Classico method). Sur lie is a third method commonly employed for Lambrusco, similar to the Classico method, from which differs for the absence of disgorgement.

ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF) (Lonvaud-Funel, 1999). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D (Lorentzen et al., 2019). Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B+C, and D, respectively, although B and C strains were also detected in wine (Campbell-Sills et al., 2015; Coton et al., 2017; Lorentzen et al., 2019;