terclim by ICS banner
IVES 9 IVES Conference Series 9 PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

Abstract

The wine industry worldwide faces more and more challenges due to climate change, such as increased dryness in some areas, water stress, sunburn and early harvesting during hot summer temperatures¹. One of the resulting problems for the wine quality might be a higher prevalence of the untypical aging off-flavor (ATA)². A substance, which Rapp and Versini made responsible for ATA, is the 2-aminoace-tophenone (2-AAP)³. 2-AAP in wine causes a naphthalene, wet towels, wet wool, acacia flower or just a soapy note⁴. The formation of the substance occurs via the degradation of tryptophan and the trypto-phan metabolite indole-3-acetic acid. The formation of 2-AAP is promoted by abiotic stress factors such as drought, low nitrogen content and high temperature, and by microorganisms via riboflavin, known as a photosensitizer5. In this study, the influence of other abiotic factors, namely oxygen and heavy me-tals, on the light-induced degradation of tryptophan to 2-AAP was investigated. Model wine with 0.53 µmol/l riboflavin was treated with UV-C light to stimulate tryptophan degradation. A linear increase in the intensity of UV-C light exposure caused a linear increase of 2-AAP. Increasing oxygen in the model wine supported the production of 2-AAP verifying that tryptophan degradation via riboflavin follows an oxidative pathway. Indeed, 2-AAP production decreased by 81 % when oxygen was reduced from saturation to anoxic conditions. It was also found that the presence of heavy metals led to a significant reduction of 2-AAP: 0.1 mmol/l Fe²+ decreased 2-AAP by 63 %, and 0.1 mmol/l Cu²+ decreased 2-AAP by 32 %. This observation can be explained by the Fenton reaction which requires Fe²+ and/or Cu²+ to produce – in this case – acetaldehyde from ethanol. It is suggested that the Fenton reaction acts as a competitive reaction to the photosensitized production of 2-AAP. As a lateral observation, the model wine in this study turned yellow after being UV-C radiated. The LC-MS signal suggested the substance lumichrome; its signal increased with the more yellow color of the model wine. Accordingly, riboflavin could not only act as a photosensitizer but also degrade itself after exposure to light.

 

1. Santos, J. A. et al. (2020). A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Applied Sciences, 10(9), 3092. https://doi.org/10.3390/app10093092
2. van Leeuwen, C. et al. (2020). Recent advancements in understanding the terroir effect on aromas in grapes and wines. OENO One, 54(2). https://doi.org/10.20870/oeno-one.2020.54.4.3983 
3. Rapp, A., Versini, V., Ullemeyer, H. (1993). 2-aminoacetophenone: Causal component of ‘untypical aging flavour’ (‘naphthale-ne note’, ‘hybrid note’) of wine. Vitis, 32(1), 61-62. https://doi.org/10.5073/vitis.1993.32.61-62
4. Alpeza, I. et al. (2021). Atypical aging off-flavour and relation between sensory recognition and 2-aminoacetophenone in Croatian wines. Journal of Central European Agriculture, 22(2), 408-419. https://doi.org/10.5513/JCEA01/22.2.3103
5. Hühn, T. et al. (1999). Release of undesired aroma compound from plant hormones during alcoholic fermentation. Vitiv. Enol. Sci., 54, 105-113.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Svetlana Cvetkova¹, Sarah Edinger¹, Daniel Zimmermann¹ und Dominik Durner¹

1. Weincampus Neustadt/DLR Rheinpfalz, Institute for Viticulture and Enology, Breitenweg 71, D-67435 Neustadt an der Weinstraße, Germany

Contact the author*

Keywords

2-aminoacetophenone, iron, oxygen, riboflavin

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

Malolactic fermentation (MLF) is a desired process in red and acidic white wines, after alcoholic fermentation (AF), carried out by the lactic acid bacterium (LAB) Oenococcus oeni. The advantages are an increase of pH, microbiological stabilization and organoleptic improvement of the final wine. However, the presence of stress factors such as ethanol, low pH, high total SO2, lack of nutrients and presence of inhibitors, could affect the successful completion of MLF [1]. Changes in amino acid composition and deficiencies in peptides after AF, showed that MLF can be delayed, signaling its importance for bacterial growth and L-malic acid degradation during MLF [2].

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

Non-Saccharomyces starter cultures became increasingly popular over the years because of their potential to produce more distinctive and unique wines. The major benefit of the use of Lachancea thermotolerans as a fermentation starter is its ability to produce relevant amounts of lactic acid and reduce alcoholic strength, making it valuable for mitigating negative impacts of climate change on grapes and wine quality. Besides, like any other non-Saccharomyces yeast, L. thermotolerans can significantly affect a whole range of other physico-chemical wine parameters.

FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

The alteration in the rainfall pattern and the increase in the temperatures associated to global climate change are already affecting wine production in many viticultural regions all around the world (1). In fact, grapes are nowadays ripening earlier from a technological point of view than in the past, but they are not necessarily mature from a phenolic point of view. Consequently, the wines made from these grapes can be unbalanced or show high alcohol content. Dramatic shifts in viticultural areas are currently being projected for the future (2).

CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

Copper in white wine can be associated with Cu(II) organic acids (Cu fraction I), Cu(I) thiol species (Cu fraction II), and Cu sulfides (Cu fraction III). The first two fractions are associated with the repression of reductive aromas in white wine, but these fractions gradually decrease in concentration during the normal bottle aging of wine. Although exposure of white wine to fluorescent light is known to induce the accumulation of volatile sulfur compounds, causing light-struck aroma, the influence on the loss of protective Cu fractions is uncertain. Riboflavin is known to be a critical initiator of photochemical reac-tions in wine, but the rate of its decay under short-term light exposure in different coloured bottles and for wine of different oxygen concentrations is not well understood.