terclim by ICS banner
IVES 9 IVES Conference Series 9 PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

Abstract

The wine industry worldwide faces more and more challenges due to climate change, such as increased dryness in some areas, water stress, sunburn and early harvesting during hot summer temperatures¹. One of the resulting problems for the wine quality might be a higher prevalence of the untypical aging off-flavor (ATA)². A substance, which Rapp and Versini made responsible for ATA, is the 2-aminoace-tophenone (2-AAP)³. 2-AAP in wine causes a naphthalene, wet towels, wet wool, acacia flower or just a soapy note⁴. The formation of the substance occurs via the degradation of tryptophan and the trypto-phan metabolite indole-3-acetic acid. The formation of 2-AAP is promoted by abiotic stress factors such as drought, low nitrogen content and high temperature, and by microorganisms via riboflavin, known as a photosensitizer5. In this study, the influence of other abiotic factors, namely oxygen and heavy me-tals, on the light-induced degradation of tryptophan to 2-AAP was investigated. Model wine with 0.53 µmol/l riboflavin was treated with UV-C light to stimulate tryptophan degradation. A linear increase in the intensity of UV-C light exposure caused a linear increase of 2-AAP. Increasing oxygen in the model wine supported the production of 2-AAP verifying that tryptophan degradation via riboflavin follows an oxidative pathway. Indeed, 2-AAP production decreased by 81 % when oxygen was reduced from saturation to anoxic conditions. It was also found that the presence of heavy metals led to a significant reduction of 2-AAP: 0.1 mmol/l Fe²+ decreased 2-AAP by 63 %, and 0.1 mmol/l Cu²+ decreased 2-AAP by 32 %. This observation can be explained by the Fenton reaction which requires Fe²+ and/or Cu²+ to produce – in this case – acetaldehyde from ethanol. It is suggested that the Fenton reaction acts as a competitive reaction to the photosensitized production of 2-AAP. As a lateral observation, the model wine in this study turned yellow after being UV-C radiated. The LC-MS signal suggested the substance lumichrome; its signal increased with the more yellow color of the model wine. Accordingly, riboflavin could not only act as a photosensitizer but also degrade itself after exposure to light.

 

1. Santos, J. A. et al. (2020). A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Applied Sciences, 10(9), 3092. https://doi.org/10.3390/app10093092
2. van Leeuwen, C. et al. (2020). Recent advancements in understanding the terroir effect on aromas in grapes and wines. OENO One, 54(2). https://doi.org/10.20870/oeno-one.2020.54.4.3983 
3. Rapp, A., Versini, V., Ullemeyer, H. (1993). 2-aminoacetophenone: Causal component of ‘untypical aging flavour’ (‘naphthale-ne note’, ‘hybrid note’) of wine. Vitis, 32(1), 61-62. https://doi.org/10.5073/vitis.1993.32.61-62
4. Alpeza, I. et al. (2021). Atypical aging off-flavour and relation between sensory recognition and 2-aminoacetophenone in Croatian wines. Journal of Central European Agriculture, 22(2), 408-419. https://doi.org/10.5513/JCEA01/22.2.3103
5. Hühn, T. et al. (1999). Release of undesired aroma compound from plant hormones during alcoholic fermentation. Vitiv. Enol. Sci., 54, 105-113.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Svetlana Cvetkova¹, Sarah Edinger¹, Daniel Zimmermann¹ und Dominik Durner¹

1. Weincampus Neustadt/DLR Rheinpfalz, Institute for Viticulture and Enology, Breitenweg 71, D-67435 Neustadt an der Weinstraße, Germany

Contact the author*

Keywords

2-aminoacetophenone, iron, oxygen, riboflavin

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

MODELLING THE AGEING POTENTIAL OF SYRAH RED WINES BY ACCELERATED AGEING TESTS: INFLUENCE OF ANTIOXIDANT ASSAYS AND PHENOLIC COMPOSITION

Red wine ageing is an important step in the red wine evolution and impacts its chemical and sensory characteristics through many chemicals and physico-chemical reactions. The kinetics of these evolutions depend on the wine studied and influence the wine ageing potential. Generally, high quality red wines require a longer period of bottle ageing before consumption¹. The ageing potential is an impor-tant parameter for wine quality and is related to the capacity of a wine to undergo oxidation over time². Phenolic compounds which are ones of the main substrates for oxidation can then potentially modulate ageing potential³.

PRODUCTION OF A FUNCTIONAL BEVERAGE FROM WINEMAKING BY-PRODUCTS: A NEW WAY OF VALORISATION

In the challenge of transforming waste into useful products that can be re-used in a circular economy perspective, winery by-products can be considered as a source of potentially bioactive molecules such as polyphenols. The wine industry generates each year 20 million tons of by-products. Kombucha fermentation is an ancestral process which allow to increase the biological properties of tea by the action of a microbial consortium formed by yeasts and bacteria called SCOBY. It belongs to the field of healthy food for which the interest of consumers is growing. The objective of this work was to propose a new functional beverage made from winemaking by-products fermented by a Kombucha SCOBY.

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown.

AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

In recent years characterized by hot dry summers, the implementation of innovative irrigation tools in the vineyard represents a crucial challenge to ensure optimal production and to avoid excess of water consumption. It is known that the grapevine reacts to multiple stresses – i.e., high temperatures and wa- ter shortage – through adaptive mechanisms that are detrimental to the yield. Furthermore, this condi- tion is usually aggravated by high solar radiation, which could negatively affect the phenolic composi- tion of the grapes. Therefore, a cooling system has been developed aiming to reduce bunches’ sunburn damage.

IMPACT OF CLIMATIC CONDITIONS ON THE SEASONING QUALITY OF OAK WOOD FOR OENOLOGICAL USE (QUERCUS PETRAEA)

For coopers, seasoning and toasting are considered crucial steps in barrel making during which the oak wood develops specific organoleptic properties. Seasoning, carried out in the open air, allows reducing the moisture content of the staves to between 14 and 18% (compared to 70 to 90% after splitting) while modulating the intrinsic composition of the oak wood. Toasting consists of applying different degrees of heat to a barrel for a specific period of time. As the temperature increases, oak wood produces a wide range of chemical compounds through thermal degradation of its intrinsic composition.