terclim by ICS banner
IVES 9 IVES Conference Series 9 ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

Abstract

Sauvignon blanc is characterized by distinctive aromas, both fruity and herbaceous. The “green” cha- racter has been attributed to the methoxypyrazines, while the “fruity” character is associated with polyfunctional mercaptans . Polyfunctional mercaptans are of great significance due to their high impact on wines and associated low perception thresholds.

Elemental sulfur (S⁰) is widely used to protect grapevines from powdery mildew. Machine harvesting can enhance the formation of C6-compounds from grape lipids, leading to desirable polyfunctional mer- captan formation in wines.

A missing piece of information in most past studies on the formation of polyfunctional thiols has been the concentration of elemental sulfur in grapes. In this research, we aimed first to develop an easy and applicable method for a winery setting to analyse elemental sulfur concentration in grape juice samples. With this method in place, trials were then established to examine the link between elemental sulfur in the juice and 3MH/3MHA formation in wines. The trials were undertaken during three consecutive harvests in New Zealand in 2020, 2021, and 2022.

The study developed a sulfide sensor to measure elemental sulfur levels in grape juice samples and in- vestigated the correlation between S⁰ and polyfunctional mercaptan concentration in resulting wines. We reduced S⁰ to sulfide using dithiothreitol in acidic conditions and used an ion-selective electrode to measure sulfide concentrations. GC-MS was used to compare thiol concentration in wine with juice S⁰ levels from 2020 and 2021 samples. The investigation was expanded in 2022 by manually applying S⁰ to grapes at various intervals prior to harvesting and analyzing the relationship between residual S⁰ levels in juice and polyfunctional mercaptans in resulting wines.

The study established a dependable method based on ion-selective analysis and produced accurate ca- libration curves. The reduction process was found to be effective and the apparatus performed well with both standard and juice samples. Additionally, the results from the 2020 and 2021 trials revealed a cor- relation between increased juice elemental sulfur and a higher formation of 3MH/3MHA, supporting the theory that S⁰ contributes to the formation of 3MH in wine. This correlation was further confirmed in the 2022 trial, which saw a substantial increase in 3MH/3MHA in wines resulting from the manual application of S⁰ to the grapes through late spraying in the field.

 

1. Lund, C. M.; Thompson, M. K.; Benkwitz, F.; Wohler, M. W.; Triggs, C. M.; Gardner, R.; Heymann, H.; Nicolau, L. American Jour-nal of Enology and Viticulture 2009, 60, 1.
2. Harsch, M. J.; Benkwitz, F.; Frost, A.; Colonna-Ceccaldi, B.; Gardner, R. C.; Salmon, J.-M. Journal of agricultural and food che-mistry 2013, 61, 3703-3713.
3. Kwasniewski, M.T.; Sacks, G.L.; Wilcox, W.F. J. Enol. Vitic. 2014, 65, 453-462.
4. Lyu, X.; Dias Araujo, L.; Quek, S.-Y.; Kilmartin, P. A. Food Chemistry 2021, 346, 128914.
5. Araujo, L. D.; Vannevel, S.; Buica, A.; Callerot, S.; Fedrizzi, B.; Kilmartin, P. A.; du Toit, W. J. Food Research International 2017, 98, 79-86.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Bahareh Sarmadi¹, Paul A. Kilmartin¹, Leandro D. Araújo ², Brandt P. Bastow¹

1. School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
2. Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand 

Contact the author*

Keywords

Sauvignon blanc, polyfunctional mercaptans, elemental sulfur, varietal thiols

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: LEVELS AND PATTERNS OBSERVED IN 2020 WINES FROM THE UNITED STATES WEST COAST

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors, described as “smoky”, “bacon”, “campfire” and “ashtray”, often long-lasting and lingering on the palate. In cases of large wildfire events, economic losses for all wine industry actors can be devastating.

OPTIMIZATION OF EXTRACTION AND DEVELOPMENT OF AN LC-HRMS METHOD TO QUANTIFY GLUTATHIONE IN WHITE WINE LEES AND YEAST DERIVATIVES

Glutathione is a natural tripeptide composed of l-glutamate, l-cysteine and glycine, found in various foods and beverages. In particular, glutathione can be found in its reduced (GSH) or oxidized form (GSSG) in must, wine or yeasts¹. Numerous studies have highlighted the importance of GSH in wine quality and aging potential². During winemaking, especially during aging on lees, GSH helps prevent the harmful effects of oxidation on the aroma of the wine³. Nevertheless, the amounts of GSH/GSSG present in wine lees are often unknown and the choice of operating conditions (quantity of lees and aging time) remains empirical.

GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

Port is a fortified wine, produced from grapes grown in the demarcated Douro region. The fortification process consists in the addition of a grape spirit (77% v/v) to the fermenting juice for fermentation interruption, resulting in remaining residual sugars in the wine and increased alcohol content (19-22%). The approval of grape spirits follows the Appellation (D.O. Port wine) rules1 and it is currently carried out based on analytical control and on sensory evaluation done by the public Institute that upholds the control of the quality of Douro Appellation wines. However, the producers of Port wines would like to have more information about quality markers of grape spirits.

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants including clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vi-nifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg.

PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

The wine industry worldwide faces more and more challenges due to climate change, such as increased dryness in some areas, water stress, sunburn and early harvesting during hot summer temperatures¹. One of the resulting problems for the wine quality might be a higher prevalence of the untypical aging off-flavor (ATA)². A substance, which Rapp and Versini made responsible for ATA, is the 2-aminoace-tophenone (2-AAP)³. 2-AAP in wine causes a naphthalene, wet towels, wet wool, acacia flower or just a soapy note⁴.