terclim by ICS banner
IVES 9 IVES Conference Series 9 ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

Abstract

Sauvignon blanc is characterized by distinctive aromas, both fruity and herbaceous. The “green” cha- racter has been attributed to the methoxypyrazines, while the “fruity” character is associated with polyfunctional mercaptans . Polyfunctional mercaptans are of great significance due to their high impact on wines and associated low perception thresholds.

Elemental sulfur (S⁰) is widely used to protect grapevines from powdery mildew. Machine harvesting can enhance the formation of C6-compounds from grape lipids, leading to desirable polyfunctional mer- captan formation in wines.

A missing piece of information in most past studies on the formation of polyfunctional thiols has been the concentration of elemental sulfur in grapes. In this research, we aimed first to develop an easy and applicable method for a winery setting to analyse elemental sulfur concentration in grape juice samples. With this method in place, trials were then established to examine the link between elemental sulfur in the juice and 3MH/3MHA formation in wines. The trials were undertaken during three consecutive harvests in New Zealand in 2020, 2021, and 2022.

The study developed a sulfide sensor to measure elemental sulfur levels in grape juice samples and in- vestigated the correlation between S⁰ and polyfunctional mercaptan concentration in resulting wines. We reduced S⁰ to sulfide using dithiothreitol in acidic conditions and used an ion-selective electrode to measure sulfide concentrations. GC-MS was used to compare thiol concentration in wine with juice S⁰ levels from 2020 and 2021 samples. The investigation was expanded in 2022 by manually applying S⁰ to grapes at various intervals prior to harvesting and analyzing the relationship between residual S⁰ levels in juice and polyfunctional mercaptans in resulting wines.

The study established a dependable method based on ion-selective analysis and produced accurate ca- libration curves. The reduction process was found to be effective and the apparatus performed well with both standard and juice samples. Additionally, the results from the 2020 and 2021 trials revealed a cor- relation between increased juice elemental sulfur and a higher formation of 3MH/3MHA, supporting the theory that S⁰ contributes to the formation of 3MH in wine. This correlation was further confirmed in the 2022 trial, which saw a substantial increase in 3MH/3MHA in wines resulting from the manual application of S⁰ to the grapes through late spraying in the field.

 

1. Lund, C. M.; Thompson, M. K.; Benkwitz, F.; Wohler, M. W.; Triggs, C. M.; Gardner, R.; Heymann, H.; Nicolau, L. American Jour-nal of Enology and Viticulture 2009, 60, 1.
2. Harsch, M. J.; Benkwitz, F.; Frost, A.; Colonna-Ceccaldi, B.; Gardner, R. C.; Salmon, J.-M. Journal of agricultural and food che-mistry 2013, 61, 3703-3713.
3. Kwasniewski, M.T.; Sacks, G.L.; Wilcox, W.F. J. Enol. Vitic. 2014, 65, 453-462.
4. Lyu, X.; Dias Araujo, L.; Quek, S.-Y.; Kilmartin, P. A. Food Chemistry 2021, 346, 128914.
5. Araujo, L. D.; Vannevel, S.; Buica, A.; Callerot, S.; Fedrizzi, B.; Kilmartin, P. A.; du Toit, W. J. Food Research International 2017, 98, 79-86.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Bahareh Sarmadi¹, Paul A. Kilmartin¹, Leandro D. Araújo ², Brandt P. Bastow¹

1. School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
2. Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand 

Contact the author*

Keywords

Sauvignon blanc, polyfunctional mercaptans, elemental sulfur, varietal thiols

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.

WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

Malolactic fermentation (MLF) is a desired process in red and acidic white wines, after alcoholic fermentation (AF), carried out by the lactic acid bacterium (LAB) Oenococcus oeni. The advantages are an increase of pH, microbiological stabilization and organoleptic improvement of the final wine. However, the presence of stress factors such as ethanol, low pH, high total SO2, lack of nutrients and presence of inhibitors, could affect the successful completion of MLF [1]. Changes in amino acid composition and deficiencies in peptides after AF, showed that MLF can be delayed, signaling its importance for bacterial growth and L-malic acid degradation during MLF [2].

NEW TOOL FOR SIMULTANEOUS MEASUREMENT OF OXYGEN CONSUMPTION AND COLOUR MODIFICATIONS IN WINES

Measuring the effect of oxygen consumption on the colour of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine is able to consume without significantly altering its colour. The changes produced in wine after being exposed to high oxygen concen-trations have been studied by different authors, but in all cases the wine has been analysed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen.

USE OF COLD LIQUID STABULATION AS AN OENOLOGICAL TECHNIQUE IN WHITE WINEMAKING: EFFECTS ON PHENOLIC, AROMATIC AND SENSORIAL COMPOSITION

The application of different winemaking techniques helps to modify the basic parameters, phenolic profile, and aroma components influencing the final wine quality. In particular, pre-fermentative processes aim to increase the extraction and preservation of grape native compounds. Among them, cold liquid stabulation (macération sur bourbes) consists in maintaining the grape juice on its lees, in suspended condition at low temperature (0-8 °C) for a variable time (generally from 7 to 21 days). The aim of this work is to apply the cold liquid stabulation on two Italian white grape varieties, Arneis and Cortese, to evaluate the impact on basic parameters, color, polyphenolic compounds (TPI), antioxidant power (DPPH), total polysaccharides, and free and glycosylated volatile compounds (GC-MS analysis) during and after the process.