terclim by ICS banner
IVES 9 IVES Conference Series 9 ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

Abstract

Sauvignon blanc is characterized by distinctive aromas, both fruity and herbaceous. The “green” cha- racter has been attributed to the methoxypyrazines, while the “fruity” character is associated with polyfunctional mercaptans . Polyfunctional mercaptans are of great significance due to their high impact on wines and associated low perception thresholds.

Elemental sulfur (S⁰) is widely used to protect grapevines from powdery mildew. Machine harvesting can enhance the formation of C6-compounds from grape lipids, leading to desirable polyfunctional mer- captan formation in wines.

A missing piece of information in most past studies on the formation of polyfunctional thiols has been the concentration of elemental sulfur in grapes. In this research, we aimed first to develop an easy and applicable method for a winery setting to analyse elemental sulfur concentration in grape juice samples. With this method in place, trials were then established to examine the link between elemental sulfur in the juice and 3MH/3MHA formation in wines. The trials were undertaken during three consecutive harvests in New Zealand in 2020, 2021, and 2022.

The study developed a sulfide sensor to measure elemental sulfur levels in grape juice samples and in- vestigated the correlation between S⁰ and polyfunctional mercaptan concentration in resulting wines. We reduced S⁰ to sulfide using dithiothreitol in acidic conditions and used an ion-selective electrode to measure sulfide concentrations. GC-MS was used to compare thiol concentration in wine with juice S⁰ levels from 2020 and 2021 samples. The investigation was expanded in 2022 by manually applying S⁰ to grapes at various intervals prior to harvesting and analyzing the relationship between residual S⁰ levels in juice and polyfunctional mercaptans in resulting wines.

The study established a dependable method based on ion-selective analysis and produced accurate ca- libration curves. The reduction process was found to be effective and the apparatus performed well with both standard and juice samples. Additionally, the results from the 2020 and 2021 trials revealed a cor- relation between increased juice elemental sulfur and a higher formation of 3MH/3MHA, supporting the theory that S⁰ contributes to the formation of 3MH in wine. This correlation was further confirmed in the 2022 trial, which saw a substantial increase in 3MH/3MHA in wines resulting from the manual application of S⁰ to the grapes through late spraying in the field.

 

1. Lund, C. M.; Thompson, M. K.; Benkwitz, F.; Wohler, M. W.; Triggs, C. M.; Gardner, R.; Heymann, H.; Nicolau, L. American Jour-nal of Enology and Viticulture 2009, 60, 1.
2. Harsch, M. J.; Benkwitz, F.; Frost, A.; Colonna-Ceccaldi, B.; Gardner, R. C.; Salmon, J.-M. Journal of agricultural and food che-mistry 2013, 61, 3703-3713.
3. Kwasniewski, M.T.; Sacks, G.L.; Wilcox, W.F. J. Enol. Vitic. 2014, 65, 453-462.
4. Lyu, X.; Dias Araujo, L.; Quek, S.-Y.; Kilmartin, P. A. Food Chemistry 2021, 346, 128914.
5. Araujo, L. D.; Vannevel, S.; Buica, A.; Callerot, S.; Fedrizzi, B.; Kilmartin, P. A.; du Toit, W. J. Food Research International 2017, 98, 79-86.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Bahareh Sarmadi¹, Paul A. Kilmartin¹, Leandro D. Araújo ², Brandt P. Bastow¹

1. School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
2. Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand 

Contact the author*

Keywords

Sauvignon blanc, polyfunctional mercaptans, elemental sulfur, varietal thiols

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

OTA DEGRADATION BY BACTERIAL LACCASEST

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degradation, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking.

PINKING PHENOMENA ON WHITE WINES: RELATION BETWEEN PINKING SUSCEPTIBILITY INDEX (PSI) AND WINE ANTHOCYANINS CONTENT

Pinking is the emergence of pink tones in white wines exclusively produced from white grape varieties, known as pinking phenomena for many years. Pinking is essentially appeared when white wines are produced under reducing conditions [1,2,3]. Pinking usually occurs after bottling and storage of white wines, but its appearance has also been described after alcoholic fermentation or even as soon as the grape must is extracted [4]. Therefore, the purpose of this work was to investigate the existence of an-thocyanins in white wines made from different white grape varieties and grown locations and critically evaluate the most common method used for predicting pinking appearance in white wines: the Pinking Susceptibility Index (PSI).

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

THE POTENTIAL USE OF SOLUBLE POLYSACCHARIDES TO PREVENT THE OXIDATION OF ROSÉ WINES

Lately, rosé wine is rapidly increasing its popularity worldwide. Short-time macerations with the red skin of the grapes cause the partial extraction of anthocyanins, which are responsible for the pinki-sh-salmon hue of rosé wines. However, the low quantity of tannins (antioxidants) and richness in phenolic acids, which can be easily oxidized into yellowish pigments, tend to predispose rosé wines to an undesirable browning. Although the use of SO₂ for the prevention of oxidation is highly extended, this practice is expected to be reduced. Therefore, the search for alternative oenological adjuvants that prevent the oxidation and browning of rosé wines is highly desired.

THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

The composition of grape berry cell walls was studied on two grape varieties, two years and two maturation levels at the same time as the extraction of anthocyanins and tannins. The chemical composition of skins, seeds, and pulps, focused on polyphenols and polysaccharides, was compared to the chemical composition in polyphenols after extraction from the skins in model solutions or after wine making of the berries. Polyphenols were mainly characterized by UPLC-MS and HPLC-SEC. Polysaccharides were characterized by analysis of the neutral sugar compositions, and also by the CoMPP (comprehensive micropolymer profiling) analysis, a new method which targets the functional groups of cell wall polysaccharides.