terclim by ICS banner
IVES 9 IVES Conference Series 9 ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

Abstract

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermentation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

Our study proposed to combine untargeted UHPLC-Q-ToF MS based metabolomic analysis with DPPH antiradical activity [3] to explore the antioxidant capacity of compounds released by inactivated non-Saccharomyces yeast (INSY) in wine like model solution. In our experimental plan, 3 INSY species were compared to one inactivated Saccharomyces cerevisiae yeast (ISY) selected for its high antioxidant capacity [4]. In that way, both the species and the production process were evaluated for their impact on the metabolic fingerprint and the antioxidant capacity. Then, unsupervised analysis has been used to extract ions correlated with the antioxidant capacity of the INSY.

Our results show that, all the INSY can accumulate GSH during the specific production process with yields ranging from +170% to +360% compared to the corresponding classical production process. Among the tested INSYs, one presenting equivalent antioxidant capacity to the control ISY while was 4 times less concentrated in GSH (4.73+/-0.09 mg/g against 20.95+/-0.34 mg/g, respectively). The principal component analysis of the 3511 ions detected by UHPLC-Q-ToF MS clearly grouped INSY by species, independently of the production process. 73 specific ions presenting strong and significant spearman correlation (rho < -0.6, p-value < 0.05) with the DPPH scores, clustered the most antioxidant INSY and the control Saccharomyces in different groups, indicating that the antioxidant capacity of these two products should be driven by different pools of compounds.

These results are very valuable for future research perspectives while they point out that, first, GSH alone is not relevant to explain the antioxidant capacity of INSY soluble fraction and other more reactive compounds must be considered. Second, they support the fact that INSY antioxidant capacity is essentially driven by a specie specific metabolism and opens an avenue for the selection new species with great enological potential.

 

1. R.L. Binati, I. Larini, E. Salvetti, S. Torriani, Glutathione production by non-Saccharomyces yeasts and its impact on winema-king: A review, Food Res. Int. 156 (2022) 111333. https://doi.org/10.1016/j.foodres.2022.111333.
2. F. Bahut, Y. Liu, R. Romanet, C. Coelho, N. Sieczkowski, H. Alexandre, P. Schmitt-Kopplin, M. Nikolantonaki, R.D. Gougeon, Metabolic diversity conveyed by the process leading to glutathione accumulation in inactivated dry yeast: A synthetic media study, Food Res. Int. 123 (2019) 762–770. https://doi.org/10.1016/j.foodres.2019.06.008.
3. F. Bahut, R. Romanet, N. Sieczkowski, P. Schmitt-Kopplin, M. Nikolantonaki, R.D. Gougeon, Antioxidant activity from inac-tivated yeast: Expanding knowledge beyond the glutathione-related oxidative stability of wine, Food Chem. 325 (2020) 126941. https://doi.org/10.1016/j.foodchem.2020.126941.
4. R. Romanet, C. Coelho, Y. Liu, F. Bahut, J. Ballester, M. Nikolantonaki, R.D. Gougeon, The Antioxidant Potential of White Wines Relies on the Chemistry of Sulfur-Containing Compounds: An Optimized DPPH Assay, Molecules. 24 (2019) 1353. https://doi. org/10.3390/molecules24071353.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Florian Bahut1,4, Nathalie Sieczkowski¹, Rémi Schneider², Zhigen Zhang³, Maria Nikolantonaki⁴ and Régis D. Gougeon⁴

1. Lallemand SAS, 19 rue des Briquetiers, BP59, 31702 Blagnac, France
2. Oenobrands, 2196 Boulevard de la Lironde, Monferrier-sur-Lez, France
3. Lallemand Inc., 1620 rue préfontaine, Montréal, Canada
4. Univ. Bourgogne Franche-Comté, Institut Agro Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France

Contact the author*

Keywords

Yeast derivatives, Antioxidant, Wine stability, Non-Saccharomyces

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine.
The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.

USE OF COLD LIQUID STABULATION AS AN OENOLOGICAL TECHNIQUE IN WHITE WINEMAKING: EFFECTS ON PHENOLIC, AROMATIC AND SENSORIAL COMPOSITION

The application of different winemaking techniques helps to modify the basic parameters, phenolic profile, and aroma components influencing the final wine quality. In particular, pre-fermentative processes aim to increase the extraction and preservation of grape native compounds. Among them, cold liquid stabulation (macération sur bourbes) consists in maintaining the grape juice on its lees, in suspended condition at low temperature (0-8 °C) for a variable time (generally from 7 to 21 days). The aim of this work is to apply the cold liquid stabulation on two Italian white grape varieties, Arneis and Cortese, to evaluate the impact on basic parameters, color, polyphenolic compounds (TPI), antioxidant power (DPPH), total polysaccharides, and free and glycosylated volatile compounds (GC-MS analysis) during and after the process.

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

METHYL SALICYLATE: A TRENDY COMPOUND MARKER OF ZELEN, A UNIQUE SLOVENIAN VARIETY

The wine market interest for autochthonous varieties, particularly from less known wine regions, has significantly raised in the past few years. In that context, Slovenia, a small country from central Europe with a long winemaking tradition, is getting more and more attention, particularly through its range of unique regional varieties. Among them, Zelen, meaning “green” in Slovene, can only be found in the Vipava valley region, located on the western side of the country, near the border with Italy. When they are young, Zelen wines display very singular aromas reminiscent of rosemary, sage and white fruit. Despite its uniqueness, Zelen wine aromatic typicality is poorly documented in the literature.

SIP and save the planet: a sensory and consumer exploration of australian wines made from potentially drought-tolerant white wine grapes

In order to attenuate the effects of climate change on the ability to cultivate quality wine grape vines in Australia, it is essential to adapt to the projected less favourable Australian climate scenarios. One response may be to convert a portion of the current grapevine plantings to those varieties that demand less water and can tolerate increased heat. This investigation aimed to (i) generate sensory profiles and (ii) obtain knowledge about Australian wine consumers’ preferences and opinions of Australian wines made from potentially drought tolerant, white wine grape varieties not traditionally cultivated in Australia. A Rate-All-That-Apply (RATA) sensory panel (n = 49) generated sensory profiles of 44 commercial white wines made from 7 different white grape varieties (Arinto, Fiano, Garganega, Greco, Verdejo, Verdelho and Vermentino), plus two benchmark examples each of an Australian Riesling, Pinot Gris and Chardonnay wine.