terclim by ICS banner
IVES 9 IVES Conference Series 9 ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

Abstract

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermentation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

Our study proposed to combine untargeted UHPLC-Q-ToF MS based metabolomic analysis with DPPH antiradical activity [3] to explore the antioxidant capacity of compounds released by inactivated non-Saccharomyces yeast (INSY) in wine like model solution. In our experimental plan, 3 INSY species were compared to one inactivated Saccharomyces cerevisiae yeast (ISY) selected for its high antioxidant capacity [4]. In that way, both the species and the production process were evaluated for their impact on the metabolic fingerprint and the antioxidant capacity. Then, unsupervised analysis has been used to extract ions correlated with the antioxidant capacity of the INSY.

Our results show that, all the INSY can accumulate GSH during the specific production process with yields ranging from +170% to +360% compared to the corresponding classical production process. Among the tested INSYs, one presenting equivalent antioxidant capacity to the control ISY while was 4 times less concentrated in GSH (4.73+/-0.09 mg/g against 20.95+/-0.34 mg/g, respectively). The principal component analysis of the 3511 ions detected by UHPLC-Q-ToF MS clearly grouped INSY by species, independently of the production process. 73 specific ions presenting strong and significant spearman correlation (rho < -0.6, p-value < 0.05) with the DPPH scores, clustered the most antioxidant INSY and the control Saccharomyces in different groups, indicating that the antioxidant capacity of these two products should be driven by different pools of compounds.

These results are very valuable for future research perspectives while they point out that, first, GSH alone is not relevant to explain the antioxidant capacity of INSY soluble fraction and other more reactive compounds must be considered. Second, they support the fact that INSY antioxidant capacity is essentially driven by a specie specific metabolism and opens an avenue for the selection new species with great enological potential.

 

1. R.L. Binati, I. Larini, E. Salvetti, S. Torriani, Glutathione production by non-Saccharomyces yeasts and its impact on winema-king: A review, Food Res. Int. 156 (2022) 111333. https://doi.org/10.1016/j.foodres.2022.111333.
2. F. Bahut, Y. Liu, R. Romanet, C. Coelho, N. Sieczkowski, H. Alexandre, P. Schmitt-Kopplin, M. Nikolantonaki, R.D. Gougeon, Metabolic diversity conveyed by the process leading to glutathione accumulation in inactivated dry yeast: A synthetic media study, Food Res. Int. 123 (2019) 762–770. https://doi.org/10.1016/j.foodres.2019.06.008.
3. F. Bahut, R. Romanet, N. Sieczkowski, P. Schmitt-Kopplin, M. Nikolantonaki, R.D. Gougeon, Antioxidant activity from inac-tivated yeast: Expanding knowledge beyond the glutathione-related oxidative stability of wine, Food Chem. 325 (2020) 126941. https://doi.org/10.1016/j.foodchem.2020.126941.
4. R. Romanet, C. Coelho, Y. Liu, F. Bahut, J. Ballester, M. Nikolantonaki, R.D. Gougeon, The Antioxidant Potential of White Wines Relies on the Chemistry of Sulfur-Containing Compounds: An Optimized DPPH Assay, Molecules. 24 (2019) 1353. https://doi. org/10.3390/molecules24071353.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Florian Bahut1,4, Nathalie Sieczkowski¹, Rémi Schneider², Zhigen Zhang³, Maria Nikolantonaki⁴ and Régis D. Gougeon⁴

1. Lallemand SAS, 19 rue des Briquetiers, BP59, 31702 Blagnac, France
2. Oenobrands, 2196 Boulevard de la Lironde, Monferrier-sur-Lez, France
3. Lallemand Inc., 1620 rue préfontaine, Montréal, Canada
4. Univ. Bourgogne Franche-Comté, Institut Agro Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France

Contact the author*

Keywords

Yeast derivatives, Antioxidant, Wine stability, Non-Saccharomyces

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

Nitrogen (N) fertilizer is important for grape growth and the quality of wine. It is essential to address the mismatch between N application and wine composition. Cabernet Gernischt (Vitis vinifera L.), as one of the main wine-grape cultivars in China, was introduced to Yantai wine region in 1892. This grape cultivar is traditionally used for quality dry red wine with fruit, spices aroma, ruby red and full-bodied wines. In order to regulate vine growth and improve grape and wine quality, Cabernet Gernischt grapevines were subjected to decreased levels of N treatments, compared to normal N supply treatment, during grape growing seasons of 2019 and 2020.

INVESTIGATION INTO MOUSY OFF-FLAVOR IN WINE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH STIR BAR SORPTIVE EXTRACTION

Mousy off-flavor is one of the defects of microbial origin in wine. It is described as a particularly unpleasant defect reminiscent of rodent urine (a “dirty mouse cage”), and grilled foods such as popcorn, rice, crackers, and bread crust. Prior to the 2010s, mousiness was very uncommon but it has been becoming more frequent in recent years. It is often associated with an increase in pH as well as certain oenological practices, which tend to significantly decrease the use of sulfur dioxide.

TANNINS AND ANTHOCYANINS KINETICS OF EXTRACTION FROM ARINARNOA, MARSELAN AND TANNAT UNDER DIFFERENT WINEMAKING TECHNIQUES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines.

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.

CHARACTERISTIC EXTRACTION OF THE PHENOL COMPOUNDS IN KOSHU (VITIS VINIFERA CV.) WINE DURING THE MACERATION

Koshu is one of the indigenous grape variety that has been grown in Japan for more than one thousand years. Recent research showed that it has 70% of Vitis vinifera genes. In 2010, the Koshu variety was included in ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine’ and has further fueled its popularity in Japan. It is the most cultivated variety for winemaking in Japan.
Koshu berries have light purple skins. The variety is mainly used to produce white wines such as an aromatic wine and a wine produced by sur lie method although various styles are produced.