terclim by ICS banner
IVES 9 IVES Conference Series 9 ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

Abstract

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermentation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

Our study proposed to combine untargeted UHPLC-Q-ToF MS based metabolomic analysis with DPPH antiradical activity [3] to explore the antioxidant capacity of compounds released by inactivated non-Saccharomyces yeast (INSY) in wine like model solution. In our experimental plan, 3 INSY species were compared to one inactivated Saccharomyces cerevisiae yeast (ISY) selected for its high antioxidant capacity [4]. In that way, both the species and the production process were evaluated for their impact on the metabolic fingerprint and the antioxidant capacity. Then, unsupervised analysis has been used to extract ions correlated with the antioxidant capacity of the INSY.

Our results show that, all the INSY can accumulate GSH during the specific production process with yields ranging from +170% to +360% compared to the corresponding classical production process. Among the tested INSYs, one presenting equivalent antioxidant capacity to the control ISY while was 4 times less concentrated in GSH (4.73+/-0.09 mg/g against 20.95+/-0.34 mg/g, respectively). The principal component analysis of the 3511 ions detected by UHPLC-Q-ToF MS clearly grouped INSY by species, independently of the production process. 73 specific ions presenting strong and significant spearman correlation (rho < -0.6, p-value < 0.05) with the DPPH scores, clustered the most antioxidant INSY and the control Saccharomyces in different groups, indicating that the antioxidant capacity of these two products should be driven by different pools of compounds.

These results are very valuable for future research perspectives while they point out that, first, GSH alone is not relevant to explain the antioxidant capacity of INSY soluble fraction and other more reactive compounds must be considered. Second, they support the fact that INSY antioxidant capacity is essentially driven by a specie specific metabolism and opens an avenue for the selection new species with great enological potential.

 

1. R.L. Binati, I. Larini, E. Salvetti, S. Torriani, Glutathione production by non-Saccharomyces yeasts and its impact on winema-king: A review, Food Res. Int. 156 (2022) 111333. https://doi.org/10.1016/j.foodres.2022.111333.
2. F. Bahut, Y. Liu, R. Romanet, C. Coelho, N. Sieczkowski, H. Alexandre, P. Schmitt-Kopplin, M. Nikolantonaki, R.D. Gougeon, Metabolic diversity conveyed by the process leading to glutathione accumulation in inactivated dry yeast: A synthetic media study, Food Res. Int. 123 (2019) 762–770. https://doi.org/10.1016/j.foodres.2019.06.008.
3. F. Bahut, R. Romanet, N. Sieczkowski, P. Schmitt-Kopplin, M. Nikolantonaki, R.D. Gougeon, Antioxidant activity from inac-tivated yeast: Expanding knowledge beyond the glutathione-related oxidative stability of wine, Food Chem. 325 (2020) 126941. https://doi.org/10.1016/j.foodchem.2020.126941.
4. R. Romanet, C. Coelho, Y. Liu, F. Bahut, J. Ballester, M. Nikolantonaki, R.D. Gougeon, The Antioxidant Potential of White Wines Relies on the Chemistry of Sulfur-Containing Compounds: An Optimized DPPH Assay, Molecules. 24 (2019) 1353. https://doi. org/10.3390/molecules24071353.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Florian Bahut1,4, Nathalie Sieczkowski¹, Rémi Schneider², Zhigen Zhang³, Maria Nikolantonaki⁴ and Régis D. Gougeon⁴

1. Lallemand SAS, 19 rue des Briquetiers, BP59, 31702 Blagnac, France
2. Oenobrands, 2196 Boulevard de la Lironde, Monferrier-sur-Lez, France
3. Lallemand Inc., 1620 rue préfontaine, Montréal, Canada
4. Univ. Bourgogne Franche-Comté, Institut Agro Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France

Contact the author*

Keywords

Yeast derivatives, Antioxidant, Wine stability, Non-Saccharomyces

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

In classic red wine-making process, grapes are usually destemmed between harvest and the filling of the vat. However, some winemakers choose to let all or a part of the stems in contact with the juice during vatting, this is called whole bunch vinification. For instance, this practice is traditionally used in some French wine regions, notably in Burgundy, Beaujolais and the Rhone Valley. The choice to keep this part of the grape is likely to affect the sensory properties of wine, as its gustatory perception1,2.

MODELLING THE AGEING POTENTIAL OF SYRAH RED WINES BY ACCELERATED AGEING TESTS: INFLUENCE OF ANTIOXIDANT ASSAYS AND PHENOLIC COMPOSITION

Red wine ageing is an important step in the red wine evolution and impacts its chemical and sensory characteristics through many chemicals and physico-chemical reactions. The kinetics of these evolutions depend on the wine studied and influence the wine ageing potential. Generally, high quality red wines require a longer period of bottle ageing before consumption¹. The ageing potential is an impor-tant parameter for wine quality and is related to the capacity of a wine to undergo oxidation over time². Phenolic compounds which are ones of the main substrates for oxidation can then potentially modulate ageing potential³.

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].

DOES LIGNIN AN ACCEPTABLE MARKER OF GRAPESEED MATURATION AND QUALITY?

Usually the winemaker consider polyphenols from the grape berry as an actor of the wine quality. There are frequently consider as a marker of grape maturity. It is commonly known that winemaker consider tannins and anthocyanins as main polyphenol actors for winemaking practices and wine quality. Here we will focus on the characterisation of lignins in grape seeds. Previous studies suggest that the seed is lignified [1], which could explain the change in colour of the seed when it reaches maturity and thus provide a reliable indicator for describing the maturity stage in the seed.

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3].