terclim by ICS banner
IVES 9 IVES Conference Series 9 ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

Abstract

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermentation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

Our study proposed to combine untargeted UHPLC-Q-ToF MS based metabolomic analysis with DPPH antiradical activity [3] to explore the antioxidant capacity of compounds released by inactivated non-Saccharomyces yeast (INSY) in wine like model solution. In our experimental plan, 3 INSY species were compared to one inactivated Saccharomyces cerevisiae yeast (ISY) selected for its high antioxidant capacity [4]. In that way, both the species and the production process were evaluated for their impact on the metabolic fingerprint and the antioxidant capacity. Then, unsupervised analysis has been used to extract ions correlated with the antioxidant capacity of the INSY.

Our results show that, all the INSY can accumulate GSH during the specific production process with yields ranging from +170% to +360% compared to the corresponding classical production process. Among the tested INSYs, one presenting equivalent antioxidant capacity to the control ISY while was 4 times less concentrated in GSH (4.73+/-0.09 mg/g against 20.95+/-0.34 mg/g, respectively). The principal component analysis of the 3511 ions detected by UHPLC-Q-ToF MS clearly grouped INSY by species, independently of the production process. 73 specific ions presenting strong and significant spearman correlation (rho < -0.6, p-value < 0.05) with the DPPH scores, clustered the most antioxidant INSY and the control Saccharomyces in different groups, indicating that the antioxidant capacity of these two products should be driven by different pools of compounds.

These results are very valuable for future research perspectives while they point out that, first, GSH alone is not relevant to explain the antioxidant capacity of INSY soluble fraction and other more reactive compounds must be considered. Second, they support the fact that INSY antioxidant capacity is essentially driven by a specie specific metabolism and opens an avenue for the selection new species with great enological potential.

 

1. R.L. Binati, I. Larini, E. Salvetti, S. Torriani, Glutathione production by non-Saccharomyces yeasts and its impact on winema-king: A review, Food Res. Int. 156 (2022) 111333. https://doi.org/10.1016/j.foodres.2022.111333.
2. F. Bahut, Y. Liu, R. Romanet, C. Coelho, N. Sieczkowski, H. Alexandre, P. Schmitt-Kopplin, M. Nikolantonaki, R.D. Gougeon, Metabolic diversity conveyed by the process leading to glutathione accumulation in inactivated dry yeast: A synthetic media study, Food Res. Int. 123 (2019) 762–770. https://doi.org/10.1016/j.foodres.2019.06.008.
3. F. Bahut, R. Romanet, N. Sieczkowski, P. Schmitt-Kopplin, M. Nikolantonaki, R.D. Gougeon, Antioxidant activity from inac-tivated yeast: Expanding knowledge beyond the glutathione-related oxidative stability of wine, Food Chem. 325 (2020) 126941. https://doi.org/10.1016/j.foodchem.2020.126941.
4. R. Romanet, C. Coelho, Y. Liu, F. Bahut, J. Ballester, M. Nikolantonaki, R.D. Gougeon, The Antioxidant Potential of White Wines Relies on the Chemistry of Sulfur-Containing Compounds: An Optimized DPPH Assay, Molecules. 24 (2019) 1353. https://doi. org/10.3390/molecules24071353.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Florian Bahut1,4, Nathalie Sieczkowski¹, Rémi Schneider², Zhigen Zhang³, Maria Nikolantonaki⁴ and Régis D. Gougeon⁴

1. Lallemand SAS, 19 rue des Briquetiers, BP59, 31702 Blagnac, France
2. Oenobrands, 2196 Boulevard de la Lironde, Monferrier-sur-Lez, France
3. Lallemand Inc., 1620 rue préfontaine, Montréal, Canada
4. Univ. Bourgogne Franche-Comté, Institut Agro Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France

Contact the author*

Keywords

Yeast derivatives, Antioxidant, Wine stability, Non-Saccharomyces

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.

SENSORY PROPERTIES IMPORTANT TO AUSTRALIAN FINE WINE CONSUMER SEGMENT PERCEPTION OF CHARDONNAY WINE COMPLEXITY AND PREFERENCE

Wine complexity is considered a multidimensional yet equivocal sensory percept. This project uncovered sensory attributes Australian Chardonnay wine consumers associate with Chardonnay wine complexity
and correlations between expert and consumer perceived wine complexity and preference. A
wine consumer test examined 6 Australian Chardonnay wines of three complexity levels designated low (LC1&2), medium (MC1&2), and high (HC1&2) by an expert panel (n = 8) using a benchtop sensory task. Consumers (n = 81) rated their perceived liking using a 9-point hedonic scale; wine complexity with a 5-point scale anchored “low”, “low-medium”, “medium”, “medium-high”, and “high” and lastly, profiled the wines using Rate-All-That-Apply (RATA). Psychographic segmentation with the Fine Wine Instrument
(FWI) generated three segments; Wine Enthusiasts (WE n=29), Aspirants (ASP n=40) and No- Frills (NF n=12).

MOVING FROM SULFITES TO BIOPROTECTION: WHICH IMPACT ON CHARDONNAY WINE?

Over the last few years, several tools have been developed to reduce the quantity of sulfites used during winemaking, including bioprotection. Although its effectiveness in preventing the development of spoilage microorganisms has been proven, few data are available on the impact of sulfite substitution by bioprotection on the final product. The objective of this study was therefore to characterize Chardonnay wines with the addition of sulfite or bioprotection in the pre-fermentation stage. The effects of both treatments on resulting matrices was evaluated at several scales: analysis of classical oenological parameters, antioxidant capacity, phenolic compounds, non-volatile metabolome and sensory profile.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.