terclim by ICS banner
IVES 9 IVES Conference Series 9 ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

Abstract

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermentation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

Our study proposed to combine untargeted UHPLC-Q-ToF MS based metabolomic analysis with DPPH antiradical activity [3] to explore the antioxidant capacity of compounds released by inactivated non-Saccharomyces yeast (INSY) in wine like model solution. In our experimental plan, 3 INSY species were compared to one inactivated Saccharomyces cerevisiae yeast (ISY) selected for its high antioxidant capacity [4]. In that way, both the species and the production process were evaluated for their impact on the metabolic fingerprint and the antioxidant capacity. Then, unsupervised analysis has been used to extract ions correlated with the antioxidant capacity of the INSY.

Our results show that, all the INSY can accumulate GSH during the specific production process with yields ranging from +170% to +360% compared to the corresponding classical production process. Among the tested INSYs, one presenting equivalent antioxidant capacity to the control ISY while was 4 times less concentrated in GSH (4.73+/-0.09 mg/g against 20.95+/-0.34 mg/g, respectively). The principal component analysis of the 3511 ions detected by UHPLC-Q-ToF MS clearly grouped INSY by species, independently of the production process. 73 specific ions presenting strong and significant spearman correlation (rho < -0.6, p-value < 0.05) with the DPPH scores, clustered the most antioxidant INSY and the control Saccharomyces in different groups, indicating that the antioxidant capacity of these two products should be driven by different pools of compounds.

These results are very valuable for future research perspectives while they point out that, first, GSH alone is not relevant to explain the antioxidant capacity of INSY soluble fraction and other more reactive compounds must be considered. Second, they support the fact that INSY antioxidant capacity is essentially driven by a specie specific metabolism and opens an avenue for the selection new species with great enological potential.

 

1. R.L. Binati, I. Larini, E. Salvetti, S. Torriani, Glutathione production by non-Saccharomyces yeasts and its impact on winema-king: A review, Food Res. Int. 156 (2022) 111333. https://doi.org/10.1016/j.foodres.2022.111333.
2. F. Bahut, Y. Liu, R. Romanet, C. Coelho, N. Sieczkowski, H. Alexandre, P. Schmitt-Kopplin, M. Nikolantonaki, R.D. Gougeon, Metabolic diversity conveyed by the process leading to glutathione accumulation in inactivated dry yeast: A synthetic media study, Food Res. Int. 123 (2019) 762–770. https://doi.org/10.1016/j.foodres.2019.06.008.
3. F. Bahut, R. Romanet, N. Sieczkowski, P. Schmitt-Kopplin, M. Nikolantonaki, R.D. Gougeon, Antioxidant activity from inac-tivated yeast: Expanding knowledge beyond the glutathione-related oxidative stability of wine, Food Chem. 325 (2020) 126941. https://doi.org/10.1016/j.foodchem.2020.126941.
4. R. Romanet, C. Coelho, Y. Liu, F. Bahut, J. Ballester, M. Nikolantonaki, R.D. Gougeon, The Antioxidant Potential of White Wines Relies on the Chemistry of Sulfur-Containing Compounds: An Optimized DPPH Assay, Molecules. 24 (2019) 1353. https://doi. org/10.3390/molecules24071353.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Florian Bahut1,4, Nathalie Sieczkowski¹, Rémi Schneider², Zhigen Zhang³, Maria Nikolantonaki⁴ and Régis D. Gougeon⁴

1. Lallemand SAS, 19 rue des Briquetiers, BP59, 31702 Blagnac, France
2. Oenobrands, 2196 Boulevard de la Lironde, Monferrier-sur-Lez, France
3. Lallemand Inc., 1620 rue préfontaine, Montréal, Canada
4. Univ. Bourgogne Franche-Comté, Institut Agro Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France

Contact the author*

Keywords

Yeast derivatives, Antioxidant, Wine stability, Non-Saccharomyces

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

Temperature control is crucial in wine production, starting from grape harvest to the bottled wine storage. Climate change and global warming affect the timing of grape ripening, and harvesting is often done during hot summer days, influencing berry integrity, secondary metabolites potential, enzyme and oxidation phenomena, and even fermentation kinetics. To curb this phenomenon, pre-fermentative cold storage can help preserve the grapes and possibly increase the concentration of key secondary metabolites. In this study, the effect of grape pre-fermentative cold storage was assessed on the ‘Moscato bianco’ white grape cultivar, known for its varietal terpenes (65% of free terpenes represented by linalool and its derivatives) and widely used in Piedmont (Italy) to produce Asti DOCG wines.

METABOLIC INTERACTIONS OF SACCHAROMYCES CEREVISIAE COCULTURES: A WAY TO EXTEND THE AROMA DIVERSITY OF CHARDONNAY WINE

Yeast co-inoculations in winemaking have been investigated in various applications, but most often in the context of modulating the aromatic profiles of wines. Our study aimed to characterize S. cerevisiae interactions and their impact on wine by taking an integrative approach. Three cocultures and corresponding pure cultures of S. cerevisiae were characterized according to their fermentative capacities, the chemical composition and aromatic profile of the associated Chardonnay wines. The various strains studied within the cocultures showed different behaviors regarding their development.

PAIRING WINE AND STOPPER: AN OLD ISSUE WITH NEW ACHIEVEMENTS

The sensory characteristics of wine are a topic studied by several researchers over time, but it continues to be a current and challenging subject. These characteristics are fundamental for the consumer acceptability, which has increasingly aroused their interest to modulate them in line with current market trends and innovation demands. The wine physical-chemical and sensory properties depend on a wide set of factors: they begin to be designed in the vineyard and are later constructed during the various stages of winemaking. Afterwards, the wine is placed in bottles and stored or commercialized.

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3].

TANNINS AND ANTHOCYANINS KINETICS OF EXTRACTION FROM ARINARNOA, MARSELAN AND TANNAT UNDER DIFFERENT WINEMAKING TECHNIQUES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines.