terclim by ICS banner
IVES 9 IVES Conference Series 9 BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

Abstract

Sulphur dioxide has been used for many years for its antimicrobial, antioxidant and antioxydasic properties in winemaking but nowadays, it is a source of controversy. Indeed, consumers are more attentive to the naturalness of their foods and beverages and the legislation is changing to reduce the total SO₂ levels allowed in wines. To limit and replace the doses of sulphur dioxide applied, winemakers can now use bioprotection consisting in live yeast addition as alternative,seems to be promising. This process, lightly used in from the food industry, allows to colonize the environment and limit the development or even eliminate undesirable microorganisms without altering the sensory properties of the product. Recent research took the advantage of the availability of commercial non-Saccharomyces yeast to evaluate their bioprotective potential in oenology. From 2017 to 2021, different experiments were conducted using a mixture of two species (Torulaspora delbrueckii and Metschnikowia pulcherrima) as bioprotection applied at 50 mg/L directly on grapes or musts on different varieties and ripening stages. Our data showed that the bioprotection was successfully implanted in the medium, whith a lower colonization for over-ripened harvests. By using 18S metabarcoding analysis in grape must, we showed that fungal communities such as Hanseniaspora, Aspergillus or Botrytis were significantly less abundant when bio- protection was applied instead of SO₂. Furthermore, bioprotection added in the must rapidly consumed dissolved O₂ and had a negative impact on the strict aerobic acetic acid bacteria by limiting the development of these spoilage microorganisms. Experiments carried out in white must showed that bioprotection also limits the oxidation phenomena: the concentrations of glutathione were significantly higher in bioprotected white musts and final wines. Finally, bioprotection used in red winemaking presents a chemical signature, characterized by fatty acid ethyl esters, increasing the perception of fruitiness in young red wines, but to a lesser extend compared to the same yeast strains in mixed fermentation with S. cerevisiae. After bottling, the bioprotected wines were not sensorially different from wines without SO₂ addition but were different from classical sulphited wines. This research confirm the antimicrobial and a partial protection from oxidation by bioprotection in winemaking and its capacity to preserve sensory properties of wines.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Sara Windholtz1,2,Claudia Nioi1,2, Edouard Pelonnier-Magimel1,2, Joana Coulon³, Emmanuel Vinsonneau⁴, Stéphane Becquet⁵, Georgia Lytra1,2, Cécile Thibon1,2, Isabelle Masneuf-Pomarède1,2

1. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3. Biolaffort, 11 Rue Aristide Bergès, 33270, Floirac, France
4. Institut Français de la Vigne et du Vin, Blanquefort, France
5. Syndicat des Vignerons Bio Nouvelle-Aquitaine, Montagne, France 

Contact the author*

Keywords

Bioprotection, Non-Saccharomyces, SO₂ alternative

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

VOLATILE COMPOUNDS AND SENSORY PROFILE OF NEBBIOLO RED WINES TREATED WITH WOOD FORMATS ALTERNATIVE TO BARRELS

In winemaking, the use of wood products alternative to barrels, has become a useful tool for the achievement of numerous oenological objectives, including the fast release of desirable volatile and polyphenolic compounds, colour stabilization, and important economic advantages if compared to the traditional barrel production. Among a huge array of variables, the wood format, the vinification protocol, especially the moment of the infusion of the woods and the exposed surface area of the alternative woods are of relevant significance, since they may influence the speed and intensity of the aroma transfer from the wood to the wine defining different sensory profiles.

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.

CONVOLUTIONAL NEURAL NETWORK TO PREDICT GENETIC GROUP AND SULFUR TOLERANCE OF BRETTANOMYCES BRUXELLENSIS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

Wines matured in contact with wood are extremely popular with consumers all over the world. Oak wood allows the organoleptic characteristics of wine to be modified. Wines are enriched with volatile and non-volatile compounds extracted from the wood. The aromas extracted from oak wood contribute to the construction of the wine’s aromatic profile and the main polyphenols extracted can modify taste perceptions such as astringency and bitterness. All the compounds extracted from the wood thus contribute to the balance and quality of the wines.

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine.