terclim by ICS banner
IVES 9 IVES Conference Series 9 BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

Abstract

Sulphur dioxide has been used for many years for its antimicrobial, antioxidant and antioxydasic properties in winemaking but nowadays, it is a source of controversy. Indeed, consumers are more attentive to the naturalness of their foods and beverages and the legislation is changing to reduce the total SO₂ levels allowed in wines. To limit and replace the doses of sulphur dioxide applied, winemakers can now use bioprotection consisting in live yeast addition as alternative,seems to be promising. This process, lightly used in from the food industry, allows to colonize the environment and limit the development or even eliminate undesirable microorganisms without altering the sensory properties of the product. Recent research took the advantage of the availability of commercial non-Saccharomyces yeast to evaluate their bioprotective potential in oenology. From 2017 to 2021, different experiments were conducted using a mixture of two species (Torulaspora delbrueckii and Metschnikowia pulcherrima) as bioprotection applied at 50 mg/L directly on grapes or musts on different varieties and ripening stages. Our data showed that the bioprotection was successfully implanted in the medium, whith a lower colonization for over-ripened harvests. By using 18S metabarcoding analysis in grape must, we showed that fungal communities such as Hanseniaspora, Aspergillus or Botrytis were significantly less abundant when bio- protection was applied instead of SO₂. Furthermore, bioprotection added in the must rapidly consumed dissolved O₂ and had a negative impact on the strict aerobic acetic acid bacteria by limiting the development of these spoilage microorganisms. Experiments carried out in white must showed that bioprotection also limits the oxidation phenomena: the concentrations of glutathione were significantly higher in bioprotected white musts and final wines. Finally, bioprotection used in red winemaking presents a chemical signature, characterized by fatty acid ethyl esters, increasing the perception of fruitiness in young red wines, but to a lesser extend compared to the same yeast strains in mixed fermentation with S. cerevisiae. After bottling, the bioprotected wines were not sensorially different from wines without SO₂ addition but were different from classical sulphited wines. This research confirm the antimicrobial and a partial protection from oxidation by bioprotection in winemaking and its capacity to preserve sensory properties of wines.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Sara Windholtz1,2,Claudia Nioi1,2, Edouard Pelonnier-Magimel1,2, Joana Coulon³, Emmanuel Vinsonneau⁴, Stéphane Becquet⁵, Georgia Lytra1,2, Cécile Thibon1,2, Isabelle Masneuf-Pomarède1,2

1. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3. Biolaffort, 11 Rue Aristide Bergès, 33270, Floirac, France
4. Institut Français de la Vigne et du Vin, Blanquefort, France
5. Syndicat des Vignerons Bio Nouvelle-Aquitaine, Montagne, France 

Contact the author*

Keywords

Bioprotection, Non-Saccharomyces, SO₂ alternative

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

Winemaking is influenced by micro-organisms, which are largely responsible for the quality of the product. In this context, Non-Saccharomyces and Saccharomyces species are of great importance not only because it influences the development of alcoholic fermentation (AF) but also on the achievement of malolactic fermentation (MLF). Among these yeasts, Torulaspora delbrueckii allows in sequential inoculation with strains of S. cerevisiae shorter MLF realizations [5] . Little information is available on the temporal effect of the presence of T. delbrueckii on (i) the evolution of AF and (ii) the MLF performance.

OENOLOGICAL AND SUSTAINABILITY POTENTIAL OF WINES PRODUCED FROM DISEASE RESISTANT GRAPE CULTIVARS (PIWI WINES)

The strategy for sustainability in the wine sector of the EU refers to a set of practices and principles that aim to minimize the negative impact of wine production on the environment, social and economic sustainability. Sustainable wine production involves a range of practices that are designed to reduce waste, conserve resources, and promote the well-being of workers and communities.

PROTEOMIC STUDY OF THE USE OF MANNOPROTEINS BY OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION

Malolactic fermentation (MLF) is a desired process to decrease acidity in wine. This fermentation, carried out mostly by Oenococcus oeni, is sometimes challenging due to the wine stress factors affecting this lactic acid bacterium. Wine is a harsh environment for microbial survival due to the presence of ethanol and the low pH, and with limited nutrients that compromise O. oeni development. This may result in slow or stuck fermentations. After the alcoholic fermentation the nutrients that remain in the medium, mainly released by yeast, can be used in a beneficial way by O. oeni during MLF.

VOLTAMETRIC PROFILING OF RED WINE COMPOSITION DURING MACERATION: A STUDY ON FOUR GRAPE VARIETIES

During red wine vinification, maceration allows the must, and consequently the wine, to be enriched with several compounds that contribute to the creation of the typical organoleptic characteristics of red wines. Among these, extraction of polyphenols (PPs) during maceration is a major process of enological interest.
The purpose of this study was the evaluate the suitability of a rapid analytical approach based in linear sweep voltammetry to monitor PPs extraction during vinification.

THE EFFECT OF DIFFERENT TERROIRS ON AROMA COMPOUNDS OF ‘KALECIK KARASI’ WINES

Kalecik Karası is a domestic grape variety of Turkey, originating from Kalecik district, 80 km from Ankara. Although there is no definite evidence, it is known that it was used in wine production by many civilizations that lived in the Anatolian region, especially the Hittites. Compared to other black wine grapes, it stands out with its low tannin content, rich fruity aroma and complex structure. In good vintages, red fruits such as strawberries, cherries and raspberries stand out in the aroma profile. Although its structure is elegant, it has the potential to age and develop similar to the ‘Pinot Noir’ wine of the Burgundy region. This offers a complex aroma structure including red flowers, earth and ripe fruits.