terclim by ICS banner
IVES 9 IVES Conference Series 9 PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Abstract

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103. (ii) Tannins were higher in SO4 under LSHW and in PL1103 under HSCW (2.5dSm-1 and control water conditions). (iii) Higher carotenoids were found at HSCW for both rootstocks. At harvest: (i) total phenolics content decreased dramatically from veraison to harvest stage under high salinity in both rootstocks. Phenolic content decreased by 34% in SO4 and 32% in PL1103. Under LS (0.7dSm-1) total phenolics content decreased by 29% in both rootstocks. (ii) Tannins in SO4 were higher under LSCW (0.7dSm-1 and control water conditions) while in PL1103 were higher under HSHW (2.5dSm-1 and high water conditions). (iii) Carotenoids highly accumulated under HSHW in both rootstocks. In young wine samples: (i) total phenolics content was higher in wines made from berries under HSCW in SO4 while in PL1103 was higher under LSCW treatment. (ii) Tannin content was higher in the wine made from berries under HSHW from SO4 and with berries from PL1103 grafts under LSCW. (iii) For carotenoids the highest content was found in wines made with SO4 under LSCW and with PL1103under HSCW. In conclusion, our results show a clear mediating effect of the rootstock on Syrah berry metabolism and wine quality. This data should be considered when planning the use of reclaimed water in irrigation strategies or when growing plants in saline soils. Moreover, graft tolerance and mediating effects on berry metabolism might not be consistent, requiring a compromise between yield and quality.

 

1. Han X, Wang Y, Lu HC, Yang HY, Li HQ, Gao XT, Pei XX, He F, Duan CQ, Wang J. The combined influence of rootstock and vintage climate on the grape and wine flavonoids of Vitis vinifera L. cv. Cabernet Sauvignon in eastern China. Front Plant Sci. 2022 Aug 16;13:978497. doi: 10.3389/fpls.2022.978497. PMID: 36051296; PMCID: PMC9424884.
2. Nikolaou, K.-E.;Chatzistathis, T.; Theocharis, S.;Argiriou, A.; Koundouras, S.;Zioziou, E. Effects of Salinity and Rootstock on Nutrient Element Concentrations and Physiology in Own–Rooted or Grafted to 1103 P and 101-14 Mgt Rootstocks of Merlot and Cabernet Franc Grapevine Cultivars under Climate Change.Sustainability 2021, 13, 2477. https://doi.org/10.3390/su13052477
3. Pou, A., Balda, P., Cifre, J., Ochogavia, J. M., Ayestaran, B., Guadalupe, Z., Llompart, M., Bota, J., & Martínez, L. . (2023). Influence of non-irrigation and seasonality on wine colour, phenolic composition and sensory quality of a grapevine (Vitis vinifera Callet) in a Mediterranean climate. OENO One, 57(1), 217–233. https://doi.org/10.20870/oeno-one.2023.57.1.7199
4. Teixeira A, Eiras-Dias J, Castellarin SD, Gerós H. Berry phenolics of grapevine under challenging environments. Int J Mol Sci. 2013 Sep 11;14(9):18711-39. doi: 10.3390/ijms140918711. PMID: 24030720; PMCID: PMC3794804.
5. Van Leeuwen, C., & Darriet, P. (2016). The Impact of Climate Change on Viticulture and Wine Quality. Journal of Wine Economics, 11(1), 150-167. doi:10.1017/jwe.2015.21

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Tania Acuña¹ Kidanemaryam Reta² Yaniv Lupo²; Noga Sikron¹; Shimon Rachmilevitch³; Naftali Lazarovitch³; Aaron Fait¹

1. Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Dry-lands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde-Boker Campus, 849900 Israel
2. Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde-Boker Campus, 849900 Israel
3. Wyler Department for Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde-Boker Campus, 849900 Israel.

Contact the author*

Keywords

phenolics, rootstocks, combined stress, wineberry quality

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

As wine resilience is the result of different variables, including the wine pH and the concentration of wine components, a detailed knowledge of the relationships between the adjuvant to attain stability and the oenological medium is fundamental for process optimization and to increase wine durability till the time of consumption.

SENSORY IMPROVEMENT OF DEALCOHOLISED WINES

Interest and willing-ness to buy alcohol-free wines by customers is increasing for several years [1]. Due to the rising relevance of dealcoholised wines it is the objective of this study to contribute to a better understanding of the flavor variation among dealcoholised wines and to explore enological measures, how to improve final quality.
First a range of commercial, alcoholfree white wines were analysed by the holistic sensory method projective mapping, including a question for hedonic acceptance. Based on the combination of a non-target-HS-SPME-GC/MS analysis with sensory analysis we obtained a clustering of the wines into three groups.

AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

Hanseniaspora vineae (Hv) is a fermenting non-Saccharomyces yeast that compared to Saccharomyces cerevisiae (Sc) present some peculiar features on its metabolism that make it attractive for its use in wine production. Among them, it has been reported a faster yeast lysis and release of polysaccharides, as well as increased ß-glucosidase activity. Hv also produces distinctive aroma compounds, including elevated levels of fermentative compounds such as ß-phenylethyl acetate and norisoprenoids like safranal. However, it is known for its high nutritional requirements, resulting in prolonged and sluggish fermentations, even when complemented with Sc strain and nutrients.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: LEVELS AND PATTERNS OBSERVED IN 2020 WINES FROM THE UNITED STATES WEST COAST

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors, described as “smoky”, “bacon”, “campfire” and “ashtray”, often long-lasting and lingering on the palate. In cases of large wildfire events, economic losses for all wine industry actors can be devastating.

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV.
Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.