terclim by ICS banner
IVES 9 IVES Conference Series 9 PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Abstract

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103. (ii) Tannins were higher in SO4 under LSHW and in PL1103 under HSCW (2.5dSm-1 and control water conditions). (iii) Higher carotenoids were found at HSCW for both rootstocks. At harvest: (i) total phenolics content decreased dramatically from veraison to harvest stage under high salinity in both rootstocks. Phenolic content decreased by 34% in SO4 and 32% in PL1103. Under LS (0.7dSm-1) total phenolics content decreased by 29% in both rootstocks. (ii) Tannins in SO4 were higher under LSCW (0.7dSm-1 and control water conditions) while in PL1103 were higher under HSHW (2.5dSm-1 and high water conditions). (iii) Carotenoids highly accumulated under HSHW in both rootstocks. In young wine samples: (i) total phenolics content was higher in wines made from berries under HSCW in SO4 while in PL1103 was higher under LSCW treatment. (ii) Tannin content was higher in the wine made from berries under HSHW from SO4 and with berries from PL1103 grafts under LSCW. (iii) For carotenoids the highest content was found in wines made with SO4 under LSCW and with PL1103under HSCW. In conclusion, our results show a clear mediating effect of the rootstock on Syrah berry metabolism and wine quality. This data should be considered when planning the use of reclaimed water in irrigation strategies or when growing plants in saline soils. Moreover, graft tolerance and mediating effects on berry metabolism might not be consistent, requiring a compromise between yield and quality.

 

1. Han X, Wang Y, Lu HC, Yang HY, Li HQ, Gao XT, Pei XX, He F, Duan CQ, Wang J. The combined influence of rootstock and vintage climate on the grape and wine flavonoids of Vitis vinifera L. cv. Cabernet Sauvignon in eastern China. Front Plant Sci. 2022 Aug 16;13:978497. doi: 10.3389/fpls.2022.978497. PMID: 36051296; PMCID: PMC9424884.
2. Nikolaou, K.-E.;Chatzistathis, T.; Theocharis, S.;Argiriou, A.; Koundouras, S.;Zioziou, E. Effects of Salinity and Rootstock on Nutrient Element Concentrations and Physiology in Own–Rooted or Grafted to 1103 P and 101-14 Mgt Rootstocks of Merlot and Cabernet Franc Grapevine Cultivars under Climate Change.Sustainability 2021, 13, 2477. https://doi.org/10.3390/su13052477
3. Pou, A., Balda, P., Cifre, J., Ochogavia, J. M., Ayestaran, B., Guadalupe, Z., Llompart, M., Bota, J., & Martínez, L. . (2023). Influence of non-irrigation and seasonality on wine colour, phenolic composition and sensory quality of a grapevine (Vitis vinifera Callet) in a Mediterranean climate. OENO One, 57(1), 217–233. https://doi.org/10.20870/oeno-one.2023.57.1.7199
4. Teixeira A, Eiras-Dias J, Castellarin SD, Gerós H. Berry phenolics of grapevine under challenging environments. Int J Mol Sci. 2013 Sep 11;14(9):18711-39. doi: 10.3390/ijms140918711. PMID: 24030720; PMCID: PMC3794804.
5. Van Leeuwen, C., & Darriet, P. (2016). The Impact of Climate Change on Viticulture and Wine Quality. Journal of Wine Economics, 11(1), 150-167. doi:10.1017/jwe.2015.21

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Tania Acuña¹ Kidanemaryam Reta² Yaniv Lupo²; Noga Sikron¹; Shimon Rachmilevitch³; Naftali Lazarovitch³; Aaron Fait¹

1. Albert Katz Department of Dryland Biotechnologies, French Associates Institute for Agriculture and Biotechnology of Dry-lands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde-Boker Campus, 849900 Israel
2. Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde-Boker Campus, 849900 Israel
3. Wyler Department for Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde-Boker Campus, 849900 Israel.

Contact the author*

Keywords

phenolics, rootstocks, combined stress, wineberry quality

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

POTENTIAL OF PEPTIDASES FOR AVOIDING PROTEIN HAZES IN MUST AND WINE

Haze formation in wine during transportation and storage is an important issue for winemakers, since turbid wines are unacceptable for sale. Such haze often results from aggregation of unstable grape proteinaceous colloids. To date, foreseeably unstable wines need to be treated with bentonite to remove these, while excessive quantities, which are often required, affect the wine volume and quality (Cosme et al. 2020). One solution to avoid these drawbacks might be the use of peptidases. Marangon et al. (2012) reported that Aspergillopepsins I and II were able to hydrolyse the respective haze-relevant proteins in combination with a flash pasteurisation. In 2021, the OIV approved this enzymatic treatment for wine stabilisation (OIV-OENO 541A and 541B).

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also
the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural
practices need to be examined to decrease the levels of sugars.

NEW TOOL FOR SIMULTANEOUS MEASUREMENT OF OXYGEN CONSUMPTION AND COLOUR MODIFICATIONS IN WINES

Measuring the effect of oxygen consumption on the colour of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine is able to consume without significantly altering its colour. The changes produced in wine after being exposed to high oxygen concen-trations have been studied by different authors, but in all cases the wine has been analysed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen.

Metabolomics for grape and wine research: exploring the contributions of amino acids to wine flavour

A critical aspect of wine quality is the overall expression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components.
Grapes directly contribute to wine only a small number of potent aroma compounds, and the unique
sensory attributes and perceived quality of a wine result from combining 100s of metabolites of grapes, yeast and bacteria, and oak wood.

SENSORY IMPROVEMENT OF DEALCOHOLISED WINES

Interest and willing-ness to buy alcohol-free wines by customers is increasing for several years [1]. Due to the rising relevance of dealcoholised wines it is the objective of this study to contribute to a better understanding of the flavor variation among dealcoholised wines and to explore enological measures, how to improve final quality.
First a range of commercial, alcoholfree white wines were analysed by the holistic sensory method projective mapping, including a question for hedonic acceptance. Based on the combination of a non-target-HS-SPME-GC/MS analysis with sensory analysis we obtained a clustering of the wines into three groups.