terclim by ICS banner
IVES 9 IVES Conference Series 9 WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Abstract

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known. A preliminary study was thus conducted to characterize the dynamic parameters of the wine’s taster gesture. From a kinematic point of view, wine swirling, on a flat support, follows an orbital motion described by its radius of gyration and its angular speed. A video processing program was developed to de- cipher the basic statistical parameters of this orbital motion done by a panel of 85 participants swirling INAO glasses filled with increasing levels of a water/ethanol mixture. Based on these statistical data, a homemade 3D-printed orbital shaking device was designed to replicate a standardized and repeatable glass swirling motion. Actually, In champagne and sparkling wine tasting, from the service of wine into the glass, gas-phase CO₂ was found to massively invade the glass headspace [3,4]. Therefore, the idea has emerged that gas-phase CO₂ could be considered as an ideal tracker to better understand the conse- quences of wine swirling on the chemical headspace inhaled by wine tasters. A spectrometer initially developed to monitor gas-phase CO₂ under static conditions was thus upgraded for the monitoring of gas-phase CO₂ in the headspace of champagne glasses automatically swirled by the 3D-printed orbi- tal shaking device [5]. The first datasets recorded thanks to this setup show a sudden drop in the CO₂ concentration in the glass headspace, probably triggered by the liquid wave traveling along the glass wall following the action of swirling the glass.

 

1. R. S. Jackson, “Wine Tasting: A Professional Handbook”, 2nd edition, Academic Press, 2009.
2. M. Reclari et al., “Surface wave dynamics in orbital shaken cylindrical containers” Phys. Fluids, 26, 052104, 2014.
3. G. Liger-Belair, “Effervescence in champagne and sparkling wines: From grape harvest to bubble rise” Eur. Phys. J Special Topics, 226, 3-116, 2017.
4. A. L. Moriaux et al., “How does gas-phase CO₂ evolve in the headspace of champagne glasses?,” J. Agric. Food Chem., 69, 7, 2262–2270, 2021.
5. F. Lecasse et al., “An Infrared Laser Sensor for Monitoring Gas-Phase CO₂ in the Headspace of Champagne Glasses under Wine Swirling Conditions” Sensors, 22, 15, 5764, 2022.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Florian LECASSE¹, Raphaël VALLON¹, Clément JACQUEMIN¹, Clara CILINDRE¹, Bertrand PARVITTE¹, Virginie ZENINARI¹, Gérard LIGER-BELAIR¹

1. Groupe de Spectrométrie Moléculaire et Atmosphérique (GSMA), UMR CNRS 7331, UFR Sciences Exactes et Naturelles

Contact the author*

Keywords

Wine swirling, Champagne, Diode Laser Sensor, CO₂

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHARACTERIZATION OF THE VOLATILE COMPOUNDS PROFILE OF COMMERCIAL GRAPPAS OBTAINED FROM THE POMACE OF AMARONE WINES

Grappa is a traditional Italian alcoholic beverage, with an alcohol content generally between 40-60% vol., obtained from the distillation of grape pomace used for the production of wine. Grappa are often aged in wooden barrels. There are various types of grappa: young, aromatic, aged, extra-aged depending on whether the distillate comes from aromatic vines or is aged in wooden barrels for shorter or longer periods. There is also flavored grappa if herbs, fruit or roots are added. All this makes it an extremely heterogeneous product both from an organoleptic and compositional point of view.

CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

Interspecific hybrid winegrapes are of growing interest in the context of climate change based on their disease resistance and cold hardiness. In addition to a need for increased understanding of their chemical composition, there is little empirical evidence on the consumer perception of non-vinifera wine. Phenolic compounds, and particularly color, play an important organoleptic and quality determination role in wine, but can vary significantly in interspecific hybrid wines compared to wines produced from Vitis vinifera cultivars [1, 2, 3]. Anecdotally, the variation in anthocyanin species, interactions, and concentrations in interspecific hybrids could result in a variance from“vinifera-like” wine color.

PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

As wine resilience is the result of different variables, including the wine pH and the concentration of wine components, a detailed knowledge of the relationships between the adjuvant to attain stability and the oenological medium is fundamental for process optimization and to increase wine durability till the time of consumption.

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).