terclim by ICS banner
IVES 9 IVES Conference Series 9 WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Abstract

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known. A preliminary study was thus conducted to characterize the dynamic parameters of the wine’s taster gesture. From a kinematic point of view, wine swirling, on a flat support, follows an orbital motion described by its radius of gyration and its angular speed. A video processing program was developed to de- cipher the basic statistical parameters of this orbital motion done by a panel of 85 participants swirling INAO glasses filled with increasing levels of a water/ethanol mixture. Based on these statistical data, a homemade 3D-printed orbital shaking device was designed to replicate a standardized and repeatable glass swirling motion. Actually, In champagne and sparkling wine tasting, from the service of wine into the glass, gas-phase CO₂ was found to massively invade the glass headspace [3,4]. Therefore, the idea has emerged that gas-phase CO₂ could be considered as an ideal tracker to better understand the conse- quences of wine swirling on the chemical headspace inhaled by wine tasters. A spectrometer initially developed to monitor gas-phase CO₂ under static conditions was thus upgraded for the monitoring of gas-phase CO₂ in the headspace of champagne glasses automatically swirled by the 3D-printed orbi- tal shaking device [5]. The first datasets recorded thanks to this setup show a sudden drop in the CO₂ concentration in the glass headspace, probably triggered by the liquid wave traveling along the glass wall following the action of swirling the glass.

 

1. R. S. Jackson, “Wine Tasting: A Professional Handbook”, 2nd edition, Academic Press, 2009.
2. M. Reclari et al., “Surface wave dynamics in orbital shaken cylindrical containers” Phys. Fluids, 26, 052104, 2014.
3. G. Liger-Belair, “Effervescence in champagne and sparkling wines: From grape harvest to bubble rise” Eur. Phys. J Special Topics, 226, 3-116, 2017.
4. A. L. Moriaux et al., “How does gas-phase CO₂ evolve in the headspace of champagne glasses?,” J. Agric. Food Chem., 69, 7, 2262–2270, 2021.
5. F. Lecasse et al., “An Infrared Laser Sensor for Monitoring Gas-Phase CO₂ in the Headspace of Champagne Glasses under Wine Swirling Conditions” Sensors, 22, 15, 5764, 2022.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Florian LECASSE¹, Raphaël VALLON¹, Clément JACQUEMIN¹, Clara CILINDRE¹, Bertrand PARVITTE¹, Virginie ZENINARI¹, Gérard LIGER-BELAIR¹

1. Groupe de Spectrométrie Moléculaire et Atmosphérique (GSMA), UMR CNRS 7331, UFR Sciences Exactes et Naturelles

Contact the author*

Keywords

Wine swirling, Champagne, Diode Laser Sensor, CO₂

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

As wine resilience is the result of different variables, including the wine pH and the concentration of wine components, a detailed knowledge of the relationships between the adjuvant to attain stability and the oenological medium is fundamental for process optimization and to increase wine durability till the time of consumption.

FACTORS AFFECTING QUERCETIN SOLUBILITY IN SANGIOVESE RED WINE: FIRST RESULTS

Quercetin (Q) is present in grape in form of glycosides and as aglycone. These compounds are extracted from grape skins during winemaking. In wines, following the hydrolysis reactions, the amount of quercetin aglycon can exceed its solubility value. Unfortunately, a threshold solubility concentration for quercetin in wine is not easy to determine because it depends on wine matrix (Gambuti et al., 2020).

SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

Planting grape varieties with several resistance loci towards powdery and downy mildew reduces the use of fungicides significantly. These fungus resistant or PIWI varieties (acronym of German Pilzwiderstandsfähig) contribute significantly to the 50% pesticide reduction goal, set by the European Green Deal for 2030. However, wine growers hesitate to plant PIWIs as they lack experience in vinification and are uncertain, how consumer accept and buy wines from these yet mostly unknown varieties. Grapes from four white and three red PIWI varieties were vinified in three vintages to obtain four diffe-rent white and red wine styles, respectively plus one rosé.

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermen- tation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

THE EFFECT OF BENTONITE FINING ON THE VOLATILE AND NON-VOLATILE PROFILE OF ITALIAN WHITE WINES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines. Macerations were of 7 days, except in the extended macerations that were of 15 days.