terclim by ICS banner
IVES 9 IVES Conference Series 9 WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Abstract

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known. A preliminary study was thus conducted to characterize the dynamic parameters of the wine’s taster gesture. From a kinematic point of view, wine swirling, on a flat support, follows an orbital motion described by its radius of gyration and its angular speed. A video processing program was developed to de- cipher the basic statistical parameters of this orbital motion done by a panel of 85 participants swirling INAO glasses filled with increasing levels of a water/ethanol mixture. Based on these statistical data, a homemade 3D-printed orbital shaking device was designed to replicate a standardized and repeatable glass swirling motion. Actually, In champagne and sparkling wine tasting, from the service of wine into the glass, gas-phase CO₂ was found to massively invade the glass headspace [3,4]. Therefore, the idea has emerged that gas-phase CO₂ could be considered as an ideal tracker to better understand the conse- quences of wine swirling on the chemical headspace inhaled by wine tasters. A spectrometer initially developed to monitor gas-phase CO₂ under static conditions was thus upgraded for the monitoring of gas-phase CO₂ in the headspace of champagne glasses automatically swirled by the 3D-printed orbi- tal shaking device [5]. The first datasets recorded thanks to this setup show a sudden drop in the CO₂ concentration in the glass headspace, probably triggered by the liquid wave traveling along the glass wall following the action of swirling the glass.

 

1. R. S. Jackson, “Wine Tasting: A Professional Handbook”, 2nd edition, Academic Press, 2009.
2. M. Reclari et al., “Surface wave dynamics in orbital shaken cylindrical containers” Phys. Fluids, 26, 052104, 2014.
3. G. Liger-Belair, “Effervescence in champagne and sparkling wines: From grape harvest to bubble rise” Eur. Phys. J Special Topics, 226, 3-116, 2017.
4. A. L. Moriaux et al., “How does gas-phase CO₂ evolve in the headspace of champagne glasses?,” J. Agric. Food Chem., 69, 7, 2262–2270, 2021.
5. F. Lecasse et al., “An Infrared Laser Sensor for Monitoring Gas-Phase CO₂ in the Headspace of Champagne Glasses under Wine Swirling Conditions” Sensors, 22, 15, 5764, 2022.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Florian LECASSE¹, Raphaël VALLON¹, Clément JACQUEMIN¹, Clara CILINDRE¹, Bertrand PARVITTE¹, Virginie ZENINARI¹, Gérard LIGER-BELAIR¹

1. Groupe de Spectrométrie Moléculaire et Atmosphérique (GSMA), UMR CNRS 7331, UFR Sciences Exactes et Naturelles

Contact the author*

Keywords

Wine swirling, Champagne, Diode Laser Sensor, CO₂

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

THE EFFECT OF PRE-FERMENTATIVE GLYPHOSATE ADDITION ON THE METABOLITE PROFILE OF WINE

The synthetic herbicide glyphosate has been used extensively in viticulture over many decades to combat weeds. Despite this, the possible influence of residual glyphosate on both the alcoholic fermentation of grape juice and the subsequent metabolite profile of wines has not been investigated. In this study, Pinot noir juice supplemented with different concentrations of glyphosate (0 µg L-1, 10 µg L-1 and 1000 µg L-1) was fermented with commercial Saccharomyces cerevisiae yeast strains. Using a combination of analytical methods, 80 metabolites were quantified in the resulting wines.

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.

FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

Champagne is a well-known wine region in Northern France with distinct terroirs and three main grape varieties. As for any vineyard, wine quality is highly linked to the microbiological characteristics of the raw materials. However, Champagne grape microbiota, especially its fungal component, has yet to be fully characterized. Our study focused on describing this mycobiota, from vine to small scale model wine, for the two main Champagne grape varieties, Pinot Noir and Meunier, using complementary cultural and omics approaches.

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine.
The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.

INVESTIGATING TERROIR TYPICITY: A COMPREHENSIVE STUDY BASED ON THE AROMATIC AND SENSORIAL PROFILES OF RED WINES FROM CORBIÈRES APPELLATION

Volatile compounds play a significant role on the organoleptic properties defining wines quality. This particular role was exploited in several studies with the aim to differentiate wines from a more or less extensive production area, according to their sensory profile [1], as well as their chemical composition [2,3] (Di Paola-Naranjo et al., 2011; Kustos et al., 2020). Indeed, since aroma compounds development in grapes depends primarily on the environmental conditions of the vines and grapes (soil and climate), it is conceivable that these parameters craft the aromatic signature of the wine produced, in relation to its origin (Van Leeuwen et al., 2020). In this work, a general study on the aromatic and sensorial profile of wines produced in five sub-regions of the Corbières denomination, a renowned red grape varieties viticultural region in South France, was reported.