terclim by ICS banner
IVES 9 IVES Conference Series 9 EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

Abstract

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach. The analyses were done on two vintages (2018 and 2019) and wines were characterized by a blend of the four main varieties (Syrah, Grenache, Carignan and Mourvèdre). A comprehensive analysis approach was adopted for the study of wines’ aromatic, color and astringency profiles. Volatile compounds were evaluated by HS-SPME-GC-MS, while wine pigments and derived pigments were assessed through spectrophotometric measurements. Moreover, wines were compared through a Quantitative Descriptive Analysis (QDA) sensorial profile method. The aim was to identify the “molecular markers” that could characterise the different wines and to assess whether these markers were related to each other and explained by their area of origin. In this study winemaking parameters were also considered and multifactorial analyses were performed to link these data to the chemical and/or sensory profiles. Results found for the Color Intensity (CI), the Total Polyphenol Index (IPT) and the nuance could be explained by the percentage of blending, color extraction techniques and ageing time. Differences in the aroma profile were mainly attributed to some fermentative and certain varietal aromas. Sensorial descriptors that appeared significant were related between each other, as well as to some aromatic and polyphenolic features highlighted (red fruits, IPT and astringency). This study could allow a first analytical characterization of five terroirs, proposing valuable elements in the definition of the typicity of wines.

 

1. Vaudour, E. (2002). The Quality of Grapes and Wine in Relation to Geography: Notions of Terroir at Various Scales. Journal of Wine Research, 13(2), 117–141. https://doi.org/10.1080/0957126022000017981
2. Maitre, I., Symoneaux, R., Jourjon, F., & Mehinagic, E. (2010). Sensory typicality of wines: How scientists have recently dealt with this subject. Food Quality and Preference, 21(7), 726–731. https://doi.org/10.1016/j.foodqual.2010.06.003

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Argentero A.¹, Caillé S.¹, Rigou P.¹, Mouls L.¹

1. SPO, INRAE, L’Institut Agro Montpellier, Université de Montpellier, Montpellier, France

Contact the author*

Keywords

red-blended-wine, vinification process, aroma compounds, polyphenols

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.

PREVALENCE OF OAK-RELATED AROMA COMPOUNDS IN PREMIUM WINES

Barrel fermentation and barrel-ageing of wine are commonly utilised practices in premium wine production. The wine aroma compounds related to barrel contact are varied and can enhance a range of wine aromas and flavours, such as ‘struck flint’, ‘caramel’, ‘red berry’, ‘toasty’ and ‘nutty’, as well as conventional oaky characters such as ‘vanilla’, ‘spice’, ‘smoky’ and ‘coconut’. A survey of commercially produced premium Shiraz, Cabernet Sauvignon, Pinot Noir and Chardonnay wines was conducted, assessing the prevalence of compounds that have been proposed as barrel-ageing markers¹ including oak lactones, volatile phenols, furanones, aldehydes, thiazoles2,3, phenylmethanethiol⁴ and 2-furylmethanethiol.⁵

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1].

FERMENTATION POTENTIAL OF INDIGENOUS NON-SACCHAROMYCES YEASTS ISOLATED FROM MARAŠTINA GRAPES OF CROATIAN VINEYARDS

The interest in indigenous non-Saccharomyces yeast for use in wine production has increased in recent years because they contribute to the complex character of the wine. The aim of this work was to investigate the fermentation products of ten indigenous strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes, belonging to Hypopichia pseudoburtonii, Metschnikowia pulcherrima, Metschnikowia sinensis, Metschnikowia chrysoperlae, Lachancea thermotolerans, Pichia kluyveri, Hanseniaspora uvarum, Hanseniaspora guillermondii, Hanseniaspora pseudoguillermondii, and Starmerella apicola species, and compare it with commercial non-Saccharomyces and Saccharomyces strains.