terclim by ICS banner
IVES 9 IVES Conference Series 9 DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

Abstract

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine. Respectively, macerations durated 15 and 30 days in total, including either pre-fermentative cooling or heating. Macro- (K, Ca, Mg, Na) and microelements (Al, Cu, Fe, Mn) were determined using the Optima DV 2000 inductively coupled plasma – optical emission spectrometer (Perkin Elmer, Shelton, Connecticut, USA) equipped with a Meinhard spray chamber, nebulizer, and peristaltic sample delivery system. The analysed elements were identified in line with ICP-OES using the PerkinElmer’s WinLab 1.35 software and quantified by direct calibration method. One-way analysis of variance (ANOVA) and Fisher’s least significance difference (LSD) test were used to compare mean values (p < 0.05). Statistics were performed using Statistica 10.0. software (Sta-Soft Inc. Tulsa, OK). The obtained results showed that the total content of macroelements in investigated wine ranged from 939.03 to 1038.57 mgL-¹. The total content of microelements ranged from 3.09 to 6.37 mgL-1, where was found that significantly the highest were treatments submitted to pre-fermentative heating (H15 and H30), despite duration of prolonged maceration. The most abundant minerals in investigated wine were potassium (K) among macroelements and iron (Fe) among microelements. The significantly highest concentration of iron (Fe) was found in the treatment equally affected with both pre-fermentative heating and prolonged post-fermentative maceration (H30). On the other hand, among the macroelements, the highest concentration of calcium (Ca) was found in treatments subjected to pre-fermentative heating (H15 and H30) regardless of maceration duration. Obtained results suggested that Teran red wine, affected with particular vinification processes considered as strong source of several micro- and macroelements.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Fumica, Orbanić¹, Sara, Rossi¹, Ena, Bestulić¹, Karin, Kovačević Ganić², Natka, Ćurko², Marina, Tomašević², Tomislav, Plavša¹, Ana, Jeromel³, Sanja, Radeka¹

1. Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
2. University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
3. University of Zagreb, Faculty of Agriculture, Department of Viticulture and Enology, Svetošimunska cesta 25, 10000 Zagreb, Croatia

Contact the author*

Keywords

Teran grape variety, mineral composition, pre-fermentative mash treatment, prolonged ma-ceration

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

MODELLING THE AGEING POTENTIAL OF SYRAH RED WINES BY ACCELERATED AGEING TESTS: INFLUENCE OF ANTIOXIDANT ASSAYS AND PHENOLIC COMPOSITION

Red wine ageing is an important step in the red wine evolution and impacts its chemical and sensory characteristics through many chemicals and physico-chemical reactions. The kinetics of these evolutions depend on the wine studied and influence the wine ageing potential. Generally, high quality red wines require a longer period of bottle ageing before consumption¹. The ageing potential is an impor-tant parameter for wine quality and is related to the capacity of a wine to undergo oxidation over time². Phenolic compounds which are ones of the main substrates for oxidation can then potentially modulate ageing potential³.

EFFECTS OF BIODYNAMIC VINEYARD MANAGEMENT ON GRAPE RIPENING MECHANISMS

Biodynamic agriculture, founded in 1924 by Rudolph Steiner, is a form of organic agriculture. Through a holistic approach, biodynamic agriculture seeks to preserve the diversity of agriculture and the existing interactions between the mineral world and the different components of the organic world. Biodynamic grape production involves the use of composts, herbal teas and mineral preparations such as 500, 501 and CBMT.
Several scientific studies have provided evidence on the effects of biodynamic farming on the soil, the plant and the wine. Numerous empirical opinions of wine growers support the existence of differences brought by such a management.

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated.