terclim by ICS banner
IVES 9 IVES Conference Series 9 EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

Abstract

Varietal innovation is a major lever for meeting the challenges of the agro-ecological transition of vineyards and their adaptation to climate change. To date, selection work has already begun in the Bordeaux region through the Newvine project. The aim of this project is to create new vine varieties with resistance to mildew and powdery mildew, adapted to the climatic conditions of the Bordeaux region and enabling the production of wines that are in line with consumer tastes and the expected typicity of Bordeaux wines.

Crosses were made by INRAE Colmar and IFV (UMT Genovigne) between varieties carrying 2 genes of resistance to mildew and 2 to powdery mildew, and Petit Verdot or Cabernet Franc grape varieties. 168 genotypes resulting from these crosses were planted on a plot in the Bordeaux vineyard with 5 vine plants per genotype. This system allowed to study the monitoring of certain agronomic aptitudes for a period of 3 vintages: resistance to mildew and powdery mildiou, sensitivity to other bio-aggressors, phenology, bearing, production, maturity.

In this study, the varietal oenological potential of 168 clones (grapes, wines) has been evaluated during the 2022 vintage by integrating 1) the study of the grape ripening characteristics and the composition of musts at harvest 2) by adapting the winemaking modalities for the part of new varietal creations which have been selected for vinification 3) by assessing the sensory quality and analytical composition of the wines made from 68 varieties.

The winemaking conditions were adapted to allow the fermentative monitoring of a large number of samples (12 white clones and 56 red clones) and the production of wine according to traditional Bordeaux methods.

All of these wines have been chemically analysed and then subjected to a sensory analysis by an ex-pert panel. To assess their oenological potential, a jury of experts rated each wine sensory characteristic according to its quality, its typicality and characterized the presence of any faults. The results show a great variability between the varieties in terms of ripening profile, grape and wine composition and the diversity of sensory profiles of the wines (some atypical or marked by alterations, others presenting typicity close to the expected profiles).

This project will capitalize on the information necessary for the selection of varieties that meet the objectives and the implementation of devices to acquire the data necessary for the registration and classification of these varieties.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

C. Thibon¹, S. Lacampagne¹, A. Petit1, B. Lafargue², S. Vanbrabant¹, C. Arsens², S. Blandeau¹, E. Castant², R. Courrèges², G. Arnold³, L. Audeguin⁴, L. Le Cunff⁴, K. Avia⁴, L. Charlier⁵, L. Delière² and P. Darriet¹

1. Université Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, 33140 Villenave d’Ornon, France
2. INRAE, UE Vigne Bordeaux, 33140 Villenave d’Ornon, France
3. INRAE, UR 1131 SVQV, Colmar, France
4. IFV, UMT Genovigne, France
5. CIVB, 1 cours du XXX Juillet, 33075 Bordeaux Cedex, France

Contact the author*

Keywords

varietal potential, microvinification, resistance, typicity

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

THE ROLE OF CELL WALL POLYSACCHARIDES IN THE EXTRACTION OF ANTHOCYANINS AND TANNINS: RESULTS, PERSPECTIVES OF A MORE POSITIVE CONTRIBUTION

The composition of grape berry cell walls was studied on two grape varieties, two years and two maturation levels at the same time as the extraction of anthocyanins and tannins. The chemical composition of skins, seeds, and pulps, focused on polyphenols and polysaccharides, was compared to the chemical composition in polyphenols after extraction from the skins in model solutions or after wine making of the berries. Polyphenols were mainly characterized by UPLC-MS and HPLC-SEC. Polysaccharides were characterized by analysis of the neutral sugar compositions, and also by the CoMPP (comprehensive micropolymer profiling) analysis, a new method which targets the functional groups of cell wall polysaccharides.

MOVING FROM SULFITES TO BIOPROTECTION: WHICH IMPACT ON CHARDONNAY WINE?

Over the last few years, several tools have been developed to reduce the quantity of sulfites used during winemaking, including bioprotection. Although its effectiveness in preventing the development of spoilage microorganisms has been proven, few data are available on the impact of sulfite substitution by bioprotection on the final product. The objective of this study was therefore to characterize Chardonnay wines with the addition of sulfite or bioprotection in the pre-fermentation stage. The effects of both treatments on resulting matrices was evaluated at several scales: analysis of classical oenological parameters, antioxidant capacity, phenolic compounds, non-volatile metabolome and sensory profile.

INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

In the last decades the use of bioestimulants in viticulture have been promoted as alternative to conven- tional pesticides. Moreover, as bioestimulants promote the biosynthesis of secondary metabolites in grape berries, several studies had investigated their influence on the accumulation of phenolic com- pounds (Monteiro et al., 2022). However, few studies, so far, are focused on the accumulation of the vo- latile compounds and their impact on the produced wines (Giménez-Bañón et al., 2022; Gomez- Plaza et al., 2012; Ruiz Garcia et al., 2014).
This study was conducted in a single vineyard of white autochthonous grapevine variety Savvatia- no (Vitis vinifera L.) in Muses Valley (Askri, Viotia, Greece). Chitosan (CHT), Abscisic Acid (ABA) and Benzothiadiazole (BTH) were applied.

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.

INVESTIGATING TERROIR TYPICITY: A COMPREHENSIVE STUDY BASED ON THE AROMATIC AND SENSORIAL PROFILES OF RED WINES FROM CORBIÈRES APPELLATION

Volatile compounds play a significant role on the organoleptic properties defining wines quality. This particular role was exploited in several studies with the aim to differentiate wines from a more or less extensive production area, according to their sensory profile [1], as well as their chemical composition [2,3] (Di Paola-Naranjo et al., 2011; Kustos et al., 2020). Indeed, since aroma compounds development in grapes depends primarily on the environmental conditions of the vines and grapes (soil and climate), it is conceivable that these parameters craft the aromatic signature of the wine produced, in relation to its origin (Van Leeuwen et al., 2020). In this work, a general study on the aromatic and sensorial profile of wines produced in five sub-regions of the Corbières denomination, a renowned red grape varieties viticultural region in South France, was reported.