terclim by ICS banner
IVES 9 IVES Conference Series 9 EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

Abstract

Varietal innovation is a major lever for meeting the challenges of the agro-ecological transition of vineyards and their adaptation to climate change. To date, selection work has already begun in the Bordeaux region through the Newvine project. The aim of this project is to create new vine varieties with resistance to mildew and powdery mildew, adapted to the climatic conditions of the Bordeaux region and enabling the production of wines that are in line with consumer tastes and the expected typicity of Bordeaux wines.

Crosses were made by INRAE Colmar and IFV (UMT Genovigne) between varieties carrying 2 genes of resistance to mildew and 2 to powdery mildew, and Petit Verdot or Cabernet Franc grape varieties. 168 genotypes resulting from these crosses were planted on a plot in the Bordeaux vineyard with 5 vine plants per genotype. This system allowed to study the monitoring of certain agronomic aptitudes for a period of 3 vintages: resistance to mildew and powdery mildiou, sensitivity to other bio-aggressors, phenology, bearing, production, maturity.

In this study, the varietal oenological potential of 168 clones (grapes, wines) has been evaluated during the 2022 vintage by integrating 1) the study of the grape ripening characteristics and the composition of musts at harvest 2) by adapting the winemaking modalities for the part of new varietal creations which have been selected for vinification 3) by assessing the sensory quality and analytical composition of the wines made from 68 varieties.

The winemaking conditions were adapted to allow the fermentative monitoring of a large number of samples (12 white clones and 56 red clones) and the production of wine according to traditional Bordeaux methods.

All of these wines have been chemically analysed and then subjected to a sensory analysis by an ex-pert panel. To assess their oenological potential, a jury of experts rated each wine sensory characteristic according to its quality, its typicality and characterized the presence of any faults. The results show a great variability between the varieties in terms of ripening profile, grape and wine composition and the diversity of sensory profiles of the wines (some atypical or marked by alterations, others presenting typicity close to the expected profiles).

This project will capitalize on the information necessary for the selection of varieties that meet the objectives and the implementation of devices to acquire the data necessary for the registration and classification of these varieties.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

C. Thibon¹, S. Lacampagne¹, A. Petit1, B. Lafargue², S. Vanbrabant¹, C. Arsens², S. Blandeau¹, E. Castant², R. Courrèges², G. Arnold³, L. Audeguin⁴, L. Le Cunff⁴, K. Avia⁴, L. Charlier⁵, L. Delière² and P. Darriet¹

1. Université Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, 33140 Villenave d’Ornon, France
2. INRAE, UE Vigne Bordeaux, 33140 Villenave d’Ornon, France
3. INRAE, UR 1131 SVQV, Colmar, France
4. IFV, UMT Genovigne, France
5. CIVB, 1 cours du XXX Juillet, 33075 Bordeaux Cedex, France

Contact the author*

Keywords

varietal potential, microvinification, resistance, typicity

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine.

THE EFFECT OF COPPER ON THE PRODUCTION OF VARIETAL THIOLS DURING THE ALCOHOLIC FERMENTATION OF COLOMBARD AND GROS MANSENG GRAPE JUICES

Nowadays, the rapid growth of vineyards with organic practices and the use of copper as the only fun-gicide against downy mildew raises again the question of the effect of copper on varietal thiols in wine, especially 3-sulfanylhexan-1-ol (3SH) and its acetate (3SHA). A few decades ago, several works indicated that the use of copper in the vineyard had a negative effect on the content of varietal thiols in Sauvignon blanc wines [1, 2]. However, these studies only considered the concentration of the reduced form (RSH) of varietal thiols, without quantifying the oxidised ones. For this purpose, we proposed to monitor both reduced and oxidised forms of varietal thiols in wine under copper stress during alcoholic fermentation to have a more complete picture of the biological and chemical mechanisms.

PREVALENCE OF OAK-RELATED AROMA COMPOUNDS IN PREMIUM WINES

Barrel fermentation and barrel-ageing of wine are commonly utilised practices in premium wine production. The wine aroma compounds related to barrel contact are varied and can enhance a range of wine aromas and flavours, such as ‘struck flint’, ‘caramel’, ‘red berry’, ‘toasty’ and ‘nutty’, as well as conventional oaky characters such as ‘vanilla’, ‘spice’, ‘smoky’ and ‘coconut’. A survey of commercially produced premium Shiraz, Cabernet Sauvignon, Pinot Noir and Chardonnay wines was conducted, assessing the prevalence of compounds that have been proposed as barrel-ageing markers¹ including oak lactones, volatile phenols, furanones, aldehydes, thiazoles2,3, phenylmethanethiol⁴ and 2-furylmethanethiol.⁵

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines.