terclim by ICS banner
IVES 9 IVES Conference Series 9 INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Abstract

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated. In this work, we used 13C-labeled malic acid to understand the main routes of its consumption and its de novo production. Two strains selected for their opposed malic acid metabolism were compared by combining several analytical chemistry techniques. The isotopic enrichment of intracellular amino acids was measured by GC-MS, the relative quantification of intra- cellular and extracellular labeled compounds was achieved by 2D-NMR, and the absolute quantification of labeled and unlabeled extracellular organic acids was achieved by LC-MS/MS. Although, both strains consume most of the malic acid provided, the “acidic strain” produces de novo malic acid during the second part of the alcoholic fermentation. In addition, 13C-filiation analyses provided evidence that most of the TCA is fed by glycolytic pyruvate and/or by cytosolic acetyl-CoA. Our results also confirmed that malic acid may be a secondary source of TCA cycle during alcoholic fermentation especially in high malic acid consuming strains that has an efficient malo-ethanolic fermentation. Finally, 13C-labeled compounds belonging to amino acids, alcoholic fermentation and neoglucogenesis pathways were identified, highlighting the pleiotropic position of malic acid in both catabolic and anabolic routes.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Vion Charlotte1,2, Bloem Audrey3, Valette Gilles4, Da Costa Gregory2, Richard Tristan2, Camarasa Carole3, Marullo Philippe 1,2

1. Biolaffort, Bordeaux, FRANCE
2. UMR 1366 Œnologie, Université de Bordeaux, INRAE, Bordeaux INP, BSA, ISVV
3. UMR SPO, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
4. IBMM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France

Contact the author*

Keywords

13C-labeling, malic acid, central carbon metabolism

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

The complexity of the wine matrix makes the monitoring of the winemaking process crucial. Fourier Transform Infrared Spectroscopy (FTIR) along with chemometrics is considered an effective analytical tool combining good accuracy, robustness, high sample throughput, and “green character”. Portable and non-portable FTIR devices are already used by the wine industry for routine analysis. However, the analytical calibrations need to be enriched, and some others are still waiting to be thoroughly developed.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

Sauvignon blanc is characterized by distinctive aromas, both fruity and herbaceous. The “green” character has been attributed to the methoxypyrazines, while the “fruity” character is associated with polyfunctional mercaptans . Polyfunctional mercaptans are of great significance due to their high impact on wines and associated low perception thresholds.
Elemental sulfur (S⁰) is widely used to protect grapevines from powdery mildew.

YEAST DERIVATIVE PRODUCTS: CHARACTERIZATION AND IMPACT ON RIBOFLAVIN RELEASE DURING THE ALCOHOLIC FERMENTATION

Light-struck taste (LST) is a wine fault that can occur in white and sparkling wines when exposed to light. This defect is mainly associated to the formation of methanethiol and dimethyl disulfide due to light-induced reactions involving riboflavin (RF) and methionine [1]. The presence of RF in wine is mainly due to the metabolism of yeast [2] which fermenting activity can be favoured by using yeast derivative products (YDPs) as nutrients. Nonetheless, a previous study showed the addition of YDPs before the alcoholic fermentation (AF) led to higher concentrations of RF in wines [3]. Due to the widespread use of YDPs in the winemaking process, this study aimed to understand the possible relation between the content of RF in wine and the YDP adopted as nutrient for AF.

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.