terclim by ICS banner
IVES 9 IVES Conference Series 9 INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Abstract

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated. In this work, we used 13C-labeled malic acid to understand the main routes of its consumption and its de novo production. Two strains selected for their opposed malic acid metabolism were compared by combining several analytical chemistry techniques. The isotopic enrichment of intracellular amino acids was measured by GC-MS, the relative quantification of intra- cellular and extracellular labeled compounds was achieved by 2D-NMR, and the absolute quantification of labeled and unlabeled extracellular organic acids was achieved by LC-MS/MS. Although, both strains consume most of the malic acid provided, the “acidic strain” produces de novo malic acid during the second part of the alcoholic fermentation. In addition, 13C-filiation analyses provided evidence that most of the TCA is fed by glycolytic pyruvate and/or by cytosolic acetyl-CoA. Our results also confirmed that malic acid may be a secondary source of TCA cycle during alcoholic fermentation especially in high malic acid consuming strains that has an efficient malo-ethanolic fermentation. Finally, 13C-labeled compounds belonging to amino acids, alcoholic fermentation and neoglucogenesis pathways were identified, highlighting the pleiotropic position of malic acid in both catabolic and anabolic routes.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Vion Charlotte1,2, Bloem Audrey3, Valette Gilles4, Da Costa Gregory2, Richard Tristan2, Camarasa Carole3, Marullo Philippe 1,2

1. Biolaffort, Bordeaux, FRANCE
2. UMR 1366 Œnologie, Université de Bordeaux, INRAE, Bordeaux INP, BSA, ISVV
3. UMR SPO, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
4. IBMM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France

Contact the author*

Keywords

13C-labeling, malic acid, central carbon metabolism

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.

FUNGAL CHITOSAN IS AN EFFICIENT ALTERNATIVE TO SULPHITES IN SPECIFIC WINEMAKING SITUATIONS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease.

THE EFFECT OF BENTONITE FINING ON THE VOLATILE AND NON-VOLATILE PROFILE OF ITALIAN WHITE WINES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines. Macerations were of 7 days, except in the extended macerations that were of 15 days.