terclim by ICS banner
IVES 9 IVES Conference Series 9 INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Abstract

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.

Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must. The fermentation kinetics, content of organic acids and gly- cerol production was monitored daily throughout the experiment. Transcript profiling of yeast genes in- volved in aroma formation and volatile composition of the must/wine was performed through real-time RT-PCR and SPE/GC–MS respectively, at four different time points of the fermentations. Specifically, a total of 28 volatile compounds were determined and the relative expression levels of 46 genes coding for acetyl-CoA synthetases, amino acid permeases, transaminases, reductases, decarboxylases, alcohol and aldehyde dehydrogenases, alcohol acetyltransferases, acyltransferases, esterases and glycosidases were recorded.

The relative expression levels of the genes implicated in amino acids, higher alcohols, ethyl esters, and terpenes metabolism, such as EEB1, EHT1, EXG1, ARO8, ARO9, PDC5, PDC6, ADH6, ADH3, AAD14, AAD16, were higher at the first three time points studied, since the most active period of aroma compound accumulation appears to occur in earlier fermentation stages. Additionally, the transcriptome data revealed substantial changes in expression patterns of genes between the different strains tested. In terms of the volatile characterization of the wines, the concentration levels of total esters and total alcohols appeared to be clearly distinct between the wines, which confirms that the production of volatile compounds is strain depended. Remarkable differences in the gene expression levels were observed when comparing the different strains which resulted in different aroma profiles.

This study enhances our understanding on yeast aroma metabolism-related gene expression and regulation. This knowledge can be a tool to modulate aroma production and orient the fermentation process towards a desirable wine aromatic profile.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Despina Lola¹, Chrysanthi Kalloniati², Emmanouil Flemetakis², Yorgos Kotseridis¹

1. Laboratory of Enology and Alcoholic Drinks, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
2. Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece

Contact the author*

Keywords

gene expression, Saccharomyces cerevisiae, yeast metabolism, volatile profile

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

Tartrate precipitation affects the properties of wines, due to the formation of crystals that cause turbidity, even after being bottled. The forced tartaric stabilization is carried out frequently for young wines, through various physicochemical procedures. The traditional treatment for tartaric stabilization is refrigeration, but it can have a negative effect on wine’s sensory properties, and particularly on the color of red wines. The aim of this study was to evaluate the effect of different tartaric stabilization options on the color and phenolic composition of Tannat red wines from Uruguay.

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3].

MOUSY OFF-FLAVOURS IN WINES: UNVEILING THE MICROORGANISMS BEHIND IT

Taints and off-flavours are one of the major concerns in the wine industry and even if the issues provoked by them are harmless, they can still have a negative impact on the quality or on the visual perception of the consumer. Nowadays, the frequency of occurrence of mousy off-flavours in wines has increased.
The reasons behind this could be the significant decrease in sulphur dioxide addition during processing, the increase in pH or even the trend for spontaneous fermentation in wine. This off-flavour is associated with Brettanomyces bruxellensis or some lactic acid bacteria metabolisms.

REMEDIATION OF SMOKE TAINTED WINE USING MOLECULARLY IMPRINTED POLYMERS

In recent years, vineyards in Australia, the US, Canada, Chile, South Africa and Europe have been exposed to smoke from wildfires. Wines made from smoke-affected grapes often exhibit unpleasant smoky, ashy characters, attributed to the presence of smoke-derived volatile compounds, including volatile phenols (which occur in free and glycosylated forms). Various strategies for remediation of smoke tainted wine have been evaluated. The most effective strategies involve the removal of smoke taint compounds via the addition of adsorbent materials such as activated carbon, which can either be added directly or used in combination with nanofiltration. However, these treatments often simultaneously remove wine constituents responsible for desirable aroma, flavour and colour attributes.

CHARACTERIZATION AND ANTIBACTERIAL ACTIVITY OF A POLYPHENOLIC EXTRACT OBTAINED BY GREEN SUPERCRITICAL CO₂ EXTRACTION FROM RED GRAPE POMACE

Upgrading wine industry solid wastes is considered as one of the main strategies to support the circular economy. Red grape pomaces constitute a rich source of polyphenols, which have been shown to possess antioxidant properties and to provide benefits for human and animal health. The objective of this work was to obtain and characterise polyphenolic extracts from red grape pomaces via green supercritical CO₂ extraction using ethanol as a co-solvent, and to evaluate their antibacterial activity against susceptible and multidrug-resistant Escherichia coli strains of animal intestinal origin.