terclim by ICS banner
IVES 9 IVES Conference Series 9 MOUSY OFF-FLAVOURS IN WINES: UNVEILING THE MICROORGANISMS BEHIND IT

MOUSY OFF-FLAVOURS IN WINES: UNVEILING THE MICROORGANISMS BEHIND IT

Abstract

Taints and off-flavours are one of the major concerns in the wine industry and even if the issues provoked by them are harmless, they can still have a negative impact on the quality or on the visual perception of the consumer. Nowadays, the frequency of occurrence of mousy off-flavours in wines has increased.
The reasons behind this could be the significant decrease in sulphur dioxide addition during processing, the increase in pH or even the trend for spontaneous fermentation in wine. This off-flavour is associated with Brettanomyces bruxellensis or some lactic acid bacteria metabolisms. Three N-heterocyclic compounds (APY, ETHP, ATHP) have been described as involved in mousiness perception. Thus far, no study addressed the variability in that N-heterocycles production according to microorganism strains from different species. Twenty-five wines presenting mousy off-flavour were analysed. In total, 252 bacte-ria with 90.5 % of Oenococcus oeni and 101 yeast strains with 53.5 % of Saccharomyces cerevisiae were isolated and identified. Even if B. bruxellensis have been isolated during this study, it has been shown that in most mousy wines, it wes not found.Their capacity to produce mousy compounds was investigated using Stir Bar Sorptive Extraction-Gas Chromatography-Mass Spectrometry (SBSE-GC-MS) in a standardised N-heterocycle assay medium (NHAM). While four and three species of yeast and bacteria, respectively, were isolated from mousy wines, only three species of microorganisms were associated with N-heterocycles production: B. bruxellensis, Lentilactobacillus hilgardii and Oenococcus oeni. The screening was then extended to collection strains for these three species to improve their genetic representativity. Our results show that the levels and the ratios of the three N-heterocycles present huge variations according to the species but all the tested strains were able to produce mousiness in the NHAM.

 

1. Pelonnier-Magimel, E., Mangiorou, P., Philippe, D., De Revel, G., Jourdes, M., Marchal, A., Marchand, S., Pons, A., Riquier, L., Tesseidre, P.-L., Thibon, C., Lytra, G., Tempère, S., & Barbe, J.-C. (2020). Sensory characterisation of Bordeaux red wines produced without added sulfites. OENO One, 54(4), 733-743. https://doi.org/10.20870/oeno-one.2020.54.4.3794
2. Tempère, S., Chatelet, B., De Revel, G., Dufoir, M., Denat, M., Ramonet, P.-Y., Marchand, S., Sadoudi, M., Richard, N., Lucas, P., Miot-Sertier, C., Claisse, O., Riquier, L., Perello, M.-C., & Ballestra, P. (2019). Comparison between standardized sensory methods used to evaluate the mousy off-flavor in red wine. OENO One, 53(2). https://doi.org/10.20870/oeno-one.2019.53.2.2350
3. Snowdon, E. M., Bowyer, M. C., Grbin, P. R., & Bowyer, P. K. (2006). Mousy Off-Flavor : A Review. Journal of Agricultural and Food Chemistry, 54(18), 6465-6474. https://doi.org/10.1021/jf0528613
4. Grbin, P. (1998). Physiology and metabolism of Dekkera/Brettanomyces yeast in relation to mousy taint production. The University of Adelaide.
5. Costello, P. J., Lee, T. H., & Henschke, Paula. (2001). Ability of lactic acid bacteria to produce N-heterocycles causing mousy off-flavour in wine. Australian Journal of Grape and Wine Research, 7(3), 160-167. https://doi.org/10.1111/j.1755-0238.2001. tb00205.x
6. Kiyomichi, D., Franc, C., Moulis, P., Riquier, L., Ballestra, P., Marchand, S., Tempère, S., & de Revel, G. (2023). Investigation into mousy off-flavor in wine using gas chromatography-mass spectrometry with stir bar sorptive extraction. Food Chemistry, 411, 135454. https://doi.org/10.1016/j.foodchem.2023.135454

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Pierre Moulis1,2, Cécile Miot-Sertier1, Laure Cordazzo1, Olivier Claisse1, Celine Franc1, Laurent Riquier1, Beata Beisert2, Stephanie Marchand1, Gilles de Revel1, Doris Rauhut2 and Patricia Ballestra1

1. UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France
2. Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany

Contact the author*

Keywords

Mousy off-flavor, Brettanomyces bruxellensis, Lactic acid bacteria, Wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EXPLORING THE METABOLIC AND PHENOTYPIC DIVERSITY OF INDIGENOUS YEASTS ISOLATED FROM GREEK WINE

Climate change leads to even more hostile and stressful for the wine microorganism conditions and consequently issues with fermentation rate progression and off-character formation are frequently observed. The objective of the current research was to classify a great collection of yeast isolates from Greek wines based on their technological properties with oenological interest. Towards this direction, fourteen spontaneously fermented wines from different regions of Greece were collected for further yeast typing. The yeast isolates were subjected in molecular analyses and identification at species level.

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.

AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

Hanseniaspora vineae (Hv) is a fermenting non-Saccharomyces yeast that compared to Saccharomyces cerevisiae (Sc) present some peculiar features on its metabolism that make it attractive for its use in wine production. Among them, it has been reported a faster yeast lysis and release of polysaccharides, as well as increased ß-glucosidase activity. Hv also produces distinctive aroma compounds, including elevated levels of fermentative compounds such as ß-phenylethyl acetate and norisoprenoids like safranal. However, it is known for its high nutritional requirements, resulting in prolonged and sluggish fermentations, even when complemented with Sc strain and nutrients.

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021).

FUNGAL CHITOSAN IS AN EFFICIENT ALTERNATIVE TO SULPHITES IN SPECIFIC WINEMAKING SITUATIONS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...