terclim by ICS banner
IVES 9 IVES Conference Series 9 MOUSY OFF-FLAVOURS IN WINES: UNVEILING THE MICROORGANISMS BEHIND IT

MOUSY OFF-FLAVOURS IN WINES: UNVEILING THE MICROORGANISMS BEHIND IT

Abstract

Taints and off-flavours are one of the major concerns in the wine industry and even if the issues provoked by them are harmless, they can still have a negative impact on the quality or on the visual perception of the consumer. Nowadays, the frequency of occurrence of mousy off-flavours in wines has increased.
The reasons behind this could be the significant decrease in sulphur dioxide addition during processing, the increase in pH or even the trend for spontaneous fermentation in wine. This off-flavour is associated with Brettanomyces bruxellensis or some lactic acid bacteria metabolisms. Three N-heterocyclic compounds (APY, ETHP, ATHP) have been described as involved in mousiness perception. Thus far, no study addressed the variability in that N-heterocycles production according to microorganism strains from different species. Twenty-five wines presenting mousy off-flavour were analysed. In total, 252 bacte-ria with 90.5 % of Oenococcus oeni and 101 yeast strains with 53.5 % of Saccharomyces cerevisiae were isolated and identified. Even if B. bruxellensis have been isolated during this study, it has been shown that in most mousy wines, it wes not found.Their capacity to produce mousy compounds was investigated using Stir Bar Sorptive Extraction-Gas Chromatography-Mass Spectrometry (SBSE-GC-MS) in a standardised N-heterocycle assay medium (NHAM). While four and three species of yeast and bacteria, respectively, were isolated from mousy wines, only three species of microorganisms were associated with N-heterocycles production: B. bruxellensis, Lentilactobacillus hilgardii and Oenococcus oeni. The screening was then extended to collection strains for these three species to improve their genetic representativity. Our results show that the levels and the ratios of the three N-heterocycles present huge variations according to the species but all the tested strains were able to produce mousiness in the NHAM.

 

1. Pelonnier-Magimel, E., Mangiorou, P., Philippe, D., De Revel, G., Jourdes, M., Marchal, A., Marchand, S., Pons, A., Riquier, L., Tesseidre, P.-L., Thibon, C., Lytra, G., Tempère, S., & Barbe, J.-C. (2020). Sensory characterisation of Bordeaux red wines produced without added sulfites. OENO One, 54(4), 733-743. https://doi.org/10.20870/oeno-one.2020.54.4.3794
2. Tempère, S., Chatelet, B., De Revel, G., Dufoir, M., Denat, M., Ramonet, P.-Y., Marchand, S., Sadoudi, M., Richard, N., Lucas, P., Miot-Sertier, C., Claisse, O., Riquier, L., Perello, M.-C., & Ballestra, P. (2019). Comparison between standardized sensory methods used to evaluate the mousy off-flavor in red wine. OENO One, 53(2). https://doi.org/10.20870/oeno-one.2019.53.2.2350
3. Snowdon, E. M., Bowyer, M. C., Grbin, P. R., & Bowyer, P. K. (2006). Mousy Off-Flavor : A Review. Journal of Agricultural and Food Chemistry, 54(18), 6465-6474. https://doi.org/10.1021/jf0528613
4. Grbin, P. (1998). Physiology and metabolism of Dekkera/Brettanomyces yeast in relation to mousy taint production. The University of Adelaide.
5. Costello, P. J., Lee, T. H., & Henschke, Paula. (2001). Ability of lactic acid bacteria to produce N-heterocycles causing mousy off-flavour in wine. Australian Journal of Grape and Wine Research, 7(3), 160-167. https://doi.org/10.1111/j.1755-0238.2001. tb00205.x
6. Kiyomichi, D., Franc, C., Moulis, P., Riquier, L., Ballestra, P., Marchand, S., Tempère, S., & de Revel, G. (2023). Investigation into mousy off-flavor in wine using gas chromatography-mass spectrometry with stir bar sorptive extraction. Food Chemistry, 411, 135454. https://doi.org/10.1016/j.foodchem.2023.135454

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Pierre Moulis1,2, Cécile Miot-Sertier1, Laure Cordazzo1, Olivier Claisse1, Celine Franc1, Laurent Riquier1, Beata Beisert2, Stephanie Marchand1, Gilles de Revel1, Doris Rauhut2 and Patricia Ballestra1

1. UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France
2. Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany

Contact the author*

Keywords

Mousy off-flavor, Brettanomyces bruxellensis, Lactic acid bacteria, Wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

Hanseniaspora vineae (Hv) is a fermenting non-Saccharomyces yeast that compared to Saccharomyces cerevisiae (Sc) present some peculiar features on its metabolism that make it attractive for its use in wine production. Among them, it has been reported a faster yeast lysis and release of polysaccharides, as well as increased ß-glucosidase activity. Hv also produces distinctive aroma compounds, including elevated levels of fermentative compounds such as ß-phenylethyl acetate and norisoprenoids like safranal. However, it is known for its high nutritional requirements, resulting in prolonged and sluggish fermentations, even when complemented with Sc strain and nutrients.

ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

Many factors influence aging of bottled wine, oxygen transfer through the closure is included. The maximum uptake of wine before oxidation begins varies from 60 mg.L-¹ to 180 mg.L-1 for white and red wines respectively [1].
The process of bottling may lead to considerable amounts of oxygen. The actual contribution of the transfer through the closure system becomes relevant at the bottle storage, but the amounts are small compared to prepacking operations [2] and to the total oxygen attained during filling.

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine.

NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

The fresh mushroom off-flavour (FMOff) has been appearing in wines since the 2000s. Some C8 compounds such as 1-octen-3-one, 1-octen-3-ol, 1-hydroxyoctan-3-one, 3-octanol and others are involved in this specific off-flavour [1-3]. At the same time, glycosidic precursors of some FMOff compounds have been identified in musts contaminated by Crustomyces subabruptus [4], highlighting the role of aroma precursors in this specific taint. However, the fate of these volatile molecules and glycosidic fractions during fermentation is not well known.