terclim by ICS banner
IVES 9 IVES Conference Series 9 MOUSY OFF-FLAVOURS IN WINES: UNVEILING THE MICROORGANISMS BEHIND IT

MOUSY OFF-FLAVOURS IN WINES: UNVEILING THE MICROORGANISMS BEHIND IT

Abstract

Taints and off-flavours are one of the major concerns in the wine industry and even if the issues provoked by them are harmless, they can still have a negative impact on the quality or on the visual perception of the consumer. Nowadays, the frequency of occurrence of mousy off-flavours in wines has increased.
The reasons behind this could be the significant decrease in sulphur dioxide addition during processing, the increase in pH or even the trend for spontaneous fermentation in wine. This off-flavour is associated with Brettanomyces bruxellensis or some lactic acid bacteria metabolisms. Three N-heterocyclic compounds (APY, ETHP, ATHP) have been described as involved in mousiness perception. Thus far, no study addressed the variability in that N-heterocycles production according to microorganism strains from different species. Twenty-five wines presenting mousy off-flavour were analysed. In total, 252 bacte-ria with 90.5 % of Oenococcus oeni and 101 yeast strains with 53.5 % of Saccharomyces cerevisiae were isolated and identified. Even if B. bruxellensis have been isolated during this study, it has been shown that in most mousy wines, it wes not found.Their capacity to produce mousy compounds was investigated using Stir Bar Sorptive Extraction-Gas Chromatography-Mass Spectrometry (SBSE-GC-MS) in a standardised N-heterocycle assay medium (NHAM). While four and three species of yeast and bacteria, respectively, were isolated from mousy wines, only three species of microorganisms were associated with N-heterocycles production: B. bruxellensis, Lentilactobacillus hilgardii and Oenococcus oeni. The screening was then extended to collection strains for these three species to improve their genetic representativity. Our results show that the levels and the ratios of the three N-heterocycles present huge variations according to the species but all the tested strains were able to produce mousiness in the NHAM.

 

1. Pelonnier-Magimel, E., Mangiorou, P., Philippe, D., De Revel, G., Jourdes, M., Marchal, A., Marchand, S., Pons, A., Riquier, L., Tesseidre, P.-L., Thibon, C., Lytra, G., Tempère, S., & Barbe, J.-C. (2020). Sensory characterisation of Bordeaux red wines produced without added sulfites. OENO One, 54(4), 733-743. https://doi.org/10.20870/oeno-one.2020.54.4.3794
2. Tempère, S., Chatelet, B., De Revel, G., Dufoir, M., Denat, M., Ramonet, P.-Y., Marchand, S., Sadoudi, M., Richard, N., Lucas, P., Miot-Sertier, C., Claisse, O., Riquier, L., Perello, M.-C., & Ballestra, P. (2019). Comparison between standardized sensory methods used to evaluate the mousy off-flavor in red wine. OENO One, 53(2). https://doi.org/10.20870/oeno-one.2019.53.2.2350
3. Snowdon, E. M., Bowyer, M. C., Grbin, P. R., & Bowyer, P. K. (2006). Mousy Off-Flavor : A Review. Journal of Agricultural and Food Chemistry, 54(18), 6465-6474. https://doi.org/10.1021/jf0528613
4. Grbin, P. (1998). Physiology and metabolism of Dekkera/Brettanomyces yeast in relation to mousy taint production. The University of Adelaide.
5. Costello, P. J., Lee, T. H., & Henschke, Paula. (2001). Ability of lactic acid bacteria to produce N-heterocycles causing mousy off-flavour in wine. Australian Journal of Grape and Wine Research, 7(3), 160-167. https://doi.org/10.1111/j.1755-0238.2001. tb00205.x
6. Kiyomichi, D., Franc, C., Moulis, P., Riquier, L., Ballestra, P., Marchand, S., Tempère, S., & de Revel, G. (2023). Investigation into mousy off-flavor in wine using gas chromatography-mass spectrometry with stir bar sorptive extraction. Food Chemistry, 411, 135454. https://doi.org/10.1016/j.foodchem.2023.135454

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Pierre Moulis1,2, Cécile Miot-Sertier1, Laure Cordazzo1, Olivier Claisse1, Celine Franc1, Laurent Riquier1, Beata Beisert2, Stephanie Marchand1, Gilles de Revel1, Doris Rauhut2 and Patricia Ballestra1

1. UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France
2. Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany

Contact the author*

Keywords

Mousy off-flavor, Brettanomyces bruxellensis, Lactic acid bacteria, Wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.

FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

Champagne is a well-known wine region in Northern France with distinct terroirs and three main grape varieties. As for any vineyard, wine quality is highly linked to the microbiological characteristics of the raw materials. However, Champagne grape microbiota, especially its fungal component, has yet to be fully characterized. Our study focused on describing this mycobiota, from vine to small scale model wine, for the two main Champagne grape varieties, Pinot Noir and Meunier, using complementary cultural and omics approaches.

WINE CONSUMER TRADE-OFF BETWEEN ORGANOLEPTIC CHARACTERISTICS AND SUSTAINABLE CLAIMS. AN EXPERIMENT ON RED WINES FROM BORDEAUX REGION

In economics, the perception of wine quality is not limited to sensorial characteristics: an indication of the region of production significantly affects the perception of quality and consumers’ WTP ([1]; [2]). However, [3] or more recently [4] show that even if a wine has an organic label, the taste of wine remains the predominant criterion in consumer preferences. The contribution of our experiment is to evaluate the impact of responsible attributes (organic label, Non Added Sulfites, HVE certification) on the appreciation of several red wines on the market. More than 280 consumers participated to the present study and they perform 25 tastings divided into 5 different sessions. 20 different red wines from Bordeaux Area are tasted.

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

REVEALING THE ORIGIN OF BORDEAUX WINES WITH RAW 1D-CHROMATOGRAMS

Understanding the composition of wine and how it is influenced by climate or wine-making practices is a challenging issue. Two approaches are typically used to explore this issue. The first approach uses chemical
fingerprints, which require advanced tools such as high-resolution mass spectrometry and multidimensional chromatography. The second approach is the targeted method, which relies on the widely available 1-D GC/MS, but involves integrating the areas under a few peaks which ends up using only a small fraction of the chromatogram.