terclim by ICS banner
IVES 9 IVES Conference Series 9 FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Abstract

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.

By studying the other quantification methods now routinely available in enology and comparing them to our FCM method, we show that alternative methods only provide a partial, and sometimes erroneous, view of the microbial populations. Coupled with the use of different markers (vitality markers and probe specific to B. bruxellensis), FCM allows the precise and specific quantification of cells and provides information on their physiological state. In addition, it is the only method that provides a comprehensive view of the present populations, all this in a short time and at a controlled cost.

These advantages make it a method of choice for multiple technical applications in wine microbiology such as the prevention of spoilage during aging, the control of fermentation activity or the quality control of barrel cleaning protocols.

Finally, aside from its technical interest, FCM responds to a major challenge for the wine industry: the commitment to sustainable development. Based on recent work evaluating the environmental impact of analysis techniques, we show through an original comparative study of B. bruxellensis quantification methods that FCM is a more sustainable technique than its alternatives usually used in the sector.

 

1. Longin, C., Julliat, F., Serpaggi, V., Maupeu, J., Bourbon, G., Rousseaux, S., Guilloux-Benatier, M., & Alexandre, H. (2016). Eva-luation of three Brettanomyces; qPCR commercial kits : Results from an interlaboratory study. OENO One, 50(4).
2. Longin C., Laforgue R., Badet-Murat ML., Alexandre H. (2022). Flow cytometry, a sustainable method for the identification and quantification of microorganisms in enology – Part 1/2 Review of the usual methods applied in wine microbiology and the principle of flow cytometry. IVES technical reviews, December 2022.
3. Longin C., Laforgue R., Badet-Murat ML., Alexandre H. (2023). Flow cytometry, a sustainable method for the identification and quantification of microorganisms in enology – Part 2/2 Practical and environmental benefits of flow cytometry applied to wine microbiology. IVES technical reviews, January 2023.
4. Płotka-Wasylka, J. (2018). A new tool for the evaluation of the analytical procedure : Green Analytical Procedure Index. Ta-lanta, 181, 204-209.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Marie-Laure Badet-Murat¹, Cédric Longin¹, Hervé Alexandre²

1. OENOTEAM, 17 Chemin de Verdet, 33500 Libourne/7 Rue de l’Industrie, 33250 Pauillac, France.
2. UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Agro Dijon, Université de Bourgogne/Franche-Comté, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France.

Contact the author*

Keywords

Brettanomyces bruxellensis, Flow cytometry, Specific quantification, Sustainable analysis

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated.

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.

USE OF 13C CP/MAS NMR AND EPR SPECTROSCOPIC TECHNIQUES TO CHARACTERIZE MACROMOLECULAR CHANGES IN OAK WOOD(QUERCUS PETRAEA) DURING TOASTING

For coopers, toasting process is considered a crucial step in barrel production during which oak wood (Q. petraea) develops several aromatic nuances released to the wine during its maturation. Toasting consists of applying different degrees of heat to a barrel for a specific period. As the temperature increases, thermal degradation of oak wood structure produces a huge range of chemical compounds. Many studies have identified the main key aroma volatile compounds (whisky-lactone, furfural, eugenol, guaiacol, vanillin). However, detailed information on how the chemical structure of oak wood degrades with increasing toasting level is still lacking.

THE INFLUENCE OF COMMERCIAL SACCHAROMYCES CEREVISIAE ON THE POLY-SACCHARIDES AND OTHER CHEMICAL PROFILES OF NEW ZEALAND PINOT NOIR WINES

Wine polysaccharides (PS) play an important role in balancing mouthfeel and stability of wine and even influence aroma volatility. Despite this, there is limited research into the effect of winemaking additives on the polysaccharide profile and other macromolecules of New Zealand (NZ) Pinot noir wine. In this study the influence of a selection of commercial S. cerevisiae strains on the chemical profile, including polysaccharides, of New Zealand Pinot noir (PN) wine was investigated. Research scale PN fermentations using five strains of commercially available S. cerevisiae (Lalvin EC1118 and RC212, Levuline BRG YSEO, Viallate Ferm R71 and R82) were undertaken. PS were qualified and quantified using HPLC-RID.

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.