terclim by ICS banner
IVES 9 IVES Conference Series 9 FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Abstract

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.

By studying the other quantification methods now routinely available in enology and comparing them to our FCM method, we show that alternative methods only provide a partial, and sometimes erroneous, view of the microbial populations. Coupled with the use of different markers (vitality markers and probe specific to B. bruxellensis), FCM allows the precise and specific quantification of cells and provides information on their physiological state. In addition, it is the only method that provides a comprehensive view of the present populations, all this in a short time and at a controlled cost.

These advantages make it a method of choice for multiple technical applications in wine microbiology such as the prevention of spoilage during aging, the control of fermentation activity or the quality control of barrel cleaning protocols.

Finally, aside from its technical interest, FCM responds to a major challenge for the wine industry: the commitment to sustainable development. Based on recent work evaluating the environmental impact of analysis techniques, we show through an original comparative study of B. bruxellensis quantification methods that FCM is a more sustainable technique than its alternatives usually used in the sector.

 

1. Longin, C., Julliat, F., Serpaggi, V., Maupeu, J., Bourbon, G., Rousseaux, S., Guilloux-Benatier, M., & Alexandre, H. (2016). Eva-luation of three Brettanomyces; qPCR commercial kits : Results from an interlaboratory study. OENO One, 50(4).
2. Longin C., Laforgue R., Badet-Murat ML., Alexandre H. (2022). Flow cytometry, a sustainable method for the identification and quantification of microorganisms in enology – Part 1/2 Review of the usual methods applied in wine microbiology and the principle of flow cytometry. IVES technical reviews, December 2022.
3. Longin C., Laforgue R., Badet-Murat ML., Alexandre H. (2023). Flow cytometry, a sustainable method for the identification and quantification of microorganisms in enology – Part 2/2 Practical and environmental benefits of flow cytometry applied to wine microbiology. IVES technical reviews, January 2023.
4. Płotka-Wasylka, J. (2018). A new tool for the evaluation of the analytical procedure : Green Analytical Procedure Index. Ta-lanta, 181, 204-209.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Marie-Laure Badet-Murat¹, Cédric Longin¹, Hervé Alexandre²

1. OENOTEAM, 17 Chemin de Verdet, 33500 Libourne/7 Rue de l’Industrie, 33250 Pauillac, France.
2. UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Agro Dijon, Université de Bourgogne/Franche-Comté, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France.

Contact the author*

Keywords

Brettanomyces bruxellensis, Flow cytometry, Specific quantification, Sustainable analysis

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

WHITE WINES OXIDATIVE STABILITY: A 2-VINTAGE STUDY OF CHARDONNAY CHAMPAGNE BASE WINES AGED ON LEES IN BARRELS

Ultra-premium champagne wines are characterized by a long stay on laths. The goal of the winemaker is to use all possible oenological techniques to keep the aromatic freshness of the future products. To that purpose, some champagne base wines can be aged on lees in oak barrels. However, if it is now acknowledged that such ageing practices contribute to the oxidative stability of dry white wines, no study has been done on Chardonnay champagne base wines designed for a long ageing on laths [1].

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate.

EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

The interactions between geographical and biotic factors, along with the winemaking process, influence the composition and sensorial characteristics of wine¹. In addition to the primary end products of alcoholic fermentation, many secondary metabolites contribute to wine flavor and aroma and their production depends predominantly on the yeast strain carrying out the fermentation. Commercially available strains of S. cerevisiae help improve the reproducibility and predictability of wine quality. However, most commercial wine strains available on the market have been isolated from Europe, are genetically similar, and may not be the ideal strain to reflect the terroir of Canadian vineyards².

SENSORY PROPERTIES IMPORTANT TO AUSTRALIAN FINE WINE CONSUMER SEGMENT PERCEPTION OF CHARDONNAY WINE COMPLEXITY AND PREFERENCE

Wine complexity is considered a multidimensional yet equivocal sensory percept. This project uncovered sensory attributes Australian Chardonnay wine consumers associate with Chardonnay wine complexity
and correlations between expert and consumer perceived wine complexity and preference. A
wine consumer test examined 6 Australian Chardonnay wines of three complexity levels designated low (LC1&2), medium (MC1&2), and high (HC1&2) by an expert panel (n = 8) using a benchtop sensory task. Consumers (n = 81) rated their perceived liking using a 9-point hedonic scale; wine complexity with a 5-point scale anchored “low”, “low-medium”, “medium”, “medium-high”, and “high” and lastly, profiled the wines using Rate-All-That-Apply (RATA). Psychographic segmentation with the Fine Wine Instrument
(FWI) generated three segments; Wine Enthusiasts (WE n=29), Aspirants (ASP n=40) and No- Frills (NF n=12).