terclim by ICS banner
IVES 9 IVES Conference Series 9 FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Abstract

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.

By studying the other quantification methods now routinely available in enology and comparing them to our FCM method, we show that alternative methods only provide a partial, and sometimes erroneous, view of the microbial populations. Coupled with the use of different markers (vitality markers and probe specific to B. bruxellensis), FCM allows the precise and specific quantification of cells and provides information on their physiological state. In addition, it is the only method that provides a comprehensive view of the present populations, all this in a short time and at a controlled cost.

These advantages make it a method of choice for multiple technical applications in wine microbiology such as the prevention of spoilage during aging, the control of fermentation activity or the quality control of barrel cleaning protocols.

Finally, aside from its technical interest, FCM responds to a major challenge for the wine industry: the commitment to sustainable development. Based on recent work evaluating the environmental impact of analysis techniques, we show through an original comparative study of B. bruxellensis quantification methods that FCM is a more sustainable technique than its alternatives usually used in the sector.

 

1. Longin, C., Julliat, F., Serpaggi, V., Maupeu, J., Bourbon, G., Rousseaux, S., Guilloux-Benatier, M., & Alexandre, H. (2016). Eva-luation of three Brettanomyces; qPCR commercial kits : Results from an interlaboratory study. OENO One, 50(4).
2. Longin C., Laforgue R., Badet-Murat ML., Alexandre H. (2022). Flow cytometry, a sustainable method for the identification and quantification of microorganisms in enology – Part 1/2 Review of the usual methods applied in wine microbiology and the principle of flow cytometry. IVES technical reviews, December 2022.
3. Longin C., Laforgue R., Badet-Murat ML., Alexandre H. (2023). Flow cytometry, a sustainable method for the identification and quantification of microorganisms in enology – Part 2/2 Practical and environmental benefits of flow cytometry applied to wine microbiology. IVES technical reviews, January 2023.
4. Płotka-Wasylka, J. (2018). A new tool for the evaluation of the analytical procedure : Green Analytical Procedure Index. Ta-lanta, 181, 204-209.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Marie-Laure Badet-Murat¹, Cédric Longin¹, Hervé Alexandre²

1. OENOTEAM, 17 Chemin de Verdet, 33500 Libourne/7 Rue de l’Industrie, 33250 Pauillac, France.
2. UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Agro Dijon, Université de Bourgogne/Franche-Comté, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France.

Contact the author*

Keywords

Brettanomyces bruxellensis, Flow cytometry, Specific quantification, Sustainable analysis

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

DOES LIGNIN AN ACCEPTABLE MARKER OF GRAPESEED MATURATION AND QUALITY?

Usually the winemaker consider polyphenols from the grape berry as an actor of the wine quality. There are frequently consider as a marker of grape maturity. It is commonly known that winemaker consider tannins and anthocyanins as main polyphenol actors for winemaking practices and wine quality. Here we will focus on the characterisation of lignins in grape seeds. Previous studies suggest that the seed is lignified [1], which could explain the change in colour of the seed when it reaches maturity and thus provide a reliable indicator for describing the maturity stage in the seed.

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated.

EFFECT OF OXIDATION ON LOW MOLECULAR WEIGHT PHENOLIC FRACTION, SALIVARY PROTEINS PRECIPITATION AND ASTRINGENCY SUBQUALITIES OF RED WINES

Changes in the low molecular weight phenolic fraction, obtained by liquid-liquid microextraction technique, were studied after controlled oxidation of two typologies of Sangiovese wines (Brunello di Montalcino and Chianti Classico) belonging to two vintages (2017 and 2018). The fractions were characterized by LC-MS and quantified by HPLC. The most abundant extracted compounds were the phenolic acids. The effect of oxidation, vintage, and wine typology was stated by a three-ways ANOVA. Gallic and syringic acids significantly increased after oxidation while (–)-epicatechin decreased the most.

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.

REVEALING THE ORIGIN OF BORDEAUX WINES WITH RAW 1D-CHROMATOGRAMS

Understanding the composition of wine and how it is influenced by climate or wine-making practices is a challenging issue. Two approaches are typically used to explore this issue. The first approach uses chemical
fingerprints, which require advanced tools such as high-resolution mass spectrometry and multidimensional chromatography. The second approach is the targeted method, which relies on the widely available 1-D GC/MS, but involves integrating the areas under a few peaks which ends up using only a small fraction of the chromatogram.