OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Integrated multiblock data analysis for improved understanding of grape maturity and vineyard site contributions to wine composition and sensory domains

Integrated multiblock data analysis for improved understanding of grape maturity and vineyard site contributions to wine composition and sensory domains

Abstract

Much research has sought to define the complex contribution of terroir (varieties x site x cultural practices) on wine composition. This investigation applied recent advances in chemometrics to determine relative contributions of vine growth, berry maturity and site mesoclimate to wine composition and sensory profiles of Shiraz and Cabernet Sauvignon for two vintages. 

Grape maturation was monitored using a berry sugar accumulation model and wines made from sequentially harvested grapes at three stages for each variety and vintage. Comprehensive targeted grape analysis of amino acids, carotenoids, sugars, organic acids, anthocyanins and volatile compounds were combined with targeted wine volatile and non-volatile chemical measures of composition and sensory descriptive analysis. Chemometric models of balanced sample sets derived from the pool samples were used in an ANOVA multiblock framework with orthogonal projection to latent structures (Boccard and Rudaz, 2016) to elucidate the relative importance of model design factors. 

Multiple data matrices derived from the experimental design factors are subtracted from the original data matrix to obtain pure effects and interaction submatrices with structured orthogonal data. A response matrix is derived from the positive eigenvalues associated with SVD of each effect matrix and residuals are then added to each submatrix prior to kernel OPLS. Model performance evaluated from residual structure ratio (RSR), goodness of fit (R2Y) and permutation testing identified the significant factors from each model. Projection of sample scores of significant factors against scores of the residual matrix is used to assess sample clusters with confidence intervals based on Hotelling T2. 

Loadings from significant experimental factors of each model were used for hierarchical cluster analysis (HCA) with Euclidean distance measures and Wards grouping criteria. Prior to HCA scores and loadings are rotated to consistent presentation of factor levels in model plots. A conservative interpretation of loadings heat maps was considered appropriate and a summary heat map for explanatory factors is presented that enable interpretation of the impact of cultivar, site (soil x mesoclimate), grape maturity and region on grape and wine composition. The integrated data driven approach used in this investigation may be of assistance for other investigators for omics based experiments.

Ref: Boccard, J. & Rudaz, S. 2016. Anal Chim Acta. 920:18-28.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Leigh Schmidtke, Guillaume Antalick, Katja Suklje, John Blackman, Alain Deloire

National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588 – Wagga Wagga – New South Wales 2678 – AUSTRALIA
Wine Research Centre, University of Nova Gorica, Vipavska, 5000 Nova Gorica, Slovenia
Agricultrual Institute of Solvenia, Lubljana, 1000, Slovenia
Montpellier SupAgro, Montpellier 34060,

Contact the author

Keywords

AMOPLS, sequential harvest, berry sugar accumulation, targeted metabolomics 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Revealing the Barossa zone sub-divisions through sensory and chemical analysis of Shiraz wine

The Barossa zone is arguably one of the most well-recognised wine producing regions in Australia and internationally; known mainly for the production of its distinct Shiraz wines. However, within the broad Barossa geographical delimitation, a variation in terroir can be perceived and is expressed as sensorial and chemical profile differences between wines. This study aimed to explore the sub-division classification across the Barossa region using chemical and sensory measurements. Shiraz grapes from 4 different vintages and different vineyards across the Barossa (2018, n = 69; 2019, n = 72; 2020, n = 79; 2021, n = 64) were harvested and made using a standardised small lot winemaking procedure. The analysis involved a sensory descriptive analysis with a highly trained panel and chemical measurement including basic chemistry (e.g. pH, TA, alcohol content, total SO2), phenolic composition, volatile compounds, metals, proline, and polysaccharides. The datasets were combined and analysed through an unsupervised, clustering analysis. Firstly, each vintage was considered separately to investigate any vintage to vintage variation. The datasets were then combined and analysed as a whole. The number of sub-divisions based on the measurements were identified and characterised with their sensory and chemical profile and some consistencies were seen between the vintages. Preliminary analysis of the sensory results showed that in most vintages, two major groups could be identified characterised with one group showing a fruit-forward profile and another displaying savoury and cooked vegetables characters. The exploration of distinct profiles arising from the Barossa wine producing region will provide producers with valuable information about the regional potential of their wine assisting with tools to increase their target market and reputation. This study will also provide a robust and comprehensive basis to determine the distinctive terroir characteristics which exist within the Barossa wine producing region.

Collective management for landscape and biodiversity conservation in viticulture: The Life + BioDiVine project

Environmental awareness is globally rising among scientific community, politicians and general public. Biodiversity conservation is becoming a concern for farmers

Two dimensions, one mission: unlocking grape composition by GC × GC

Aroma is one of the most important attributes that determine consumer’s perception of the sensory quality of wine and varietal typicity.

The evaluation of tannin activity in south african red wines

Astringency is an important red wine quality attribute, which can be measured both chemically and sensorially. The use of tannin activity shows potential as a valuable chemical measurement in understanding red wine mouthfeel properties such as astringency and bitterness, which is also affected by tannin structural factors, in addition to matrix effects. Tannin activity is defined as the enthalpy of interaction between tannins and a hydrophobic surface. Studies involving tannin activity have been performed since the early 2010’s, but chemosensory studies used to evaluate how structure-activity relationships change across multiple, consecutive vintages are limited. The aim of this study is to investigate how tannin activity may be linked to red wine mouthfeel, and how all these variables may change according to wine age.

Comprehensive lipid profiling of grape musts: impact of static settling

Lipids are crucial in alcoholic fermentation, influencing yeast metabolism by providing nutrients and modulating membrane composition [1]. They also serve as precursors to aromatic compounds shaping wine sensory profiles [2].