OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Integrated multiblock data analysis for improved understanding of grape maturity and vineyard site contributions to wine composition and sensory domains

Integrated multiblock data analysis for improved understanding of grape maturity and vineyard site contributions to wine composition and sensory domains

Abstract

Much research has sought to define the complex contribution of terroir (varieties x site x cultural practices) on wine composition. This investigation applied recent advances in chemometrics to determine relative contributions of vine growth, berry maturity and site mesoclimate to wine composition and sensory profiles of Shiraz and Cabernet Sauvignon for two vintages. 

Grape maturation was monitored using a berry sugar accumulation model and wines made from sequentially harvested grapes at three stages for each variety and vintage. Comprehensive targeted grape analysis of amino acids, carotenoids, sugars, organic acids, anthocyanins and volatile compounds were combined with targeted wine volatile and non-volatile chemical measures of composition and sensory descriptive analysis. Chemometric models of balanced sample sets derived from the pool samples were used in an ANOVA multiblock framework with orthogonal projection to latent structures (Boccard and Rudaz, 2016) to elucidate the relative importance of model design factors. 

Multiple data matrices derived from the experimental design factors are subtracted from the original data matrix to obtain pure effects and interaction submatrices with structured orthogonal data. A response matrix is derived from the positive eigenvalues associated with SVD of each effect matrix and residuals are then added to each submatrix prior to kernel OPLS. Model performance evaluated from residual structure ratio (RSR), goodness of fit (R2Y) and permutation testing identified the significant factors from each model. Projection of sample scores of significant factors against scores of the residual matrix is used to assess sample clusters with confidence intervals based on Hotelling T2. 

Loadings from significant experimental factors of each model were used for hierarchical cluster analysis (HCA) with Euclidean distance measures and Wards grouping criteria. Prior to HCA scores and loadings are rotated to consistent presentation of factor levels in model plots. A conservative interpretation of loadings heat maps was considered appropriate and a summary heat map for explanatory factors is presented that enable interpretation of the impact of cultivar, site (soil x mesoclimate), grape maturity and region on grape and wine composition. The integrated data driven approach used in this investigation may be of assistance for other investigators for omics based experiments.

Ref: Boccard, J. & Rudaz, S. 2016. Anal Chim Acta. 920:18-28.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Leigh Schmidtke, Guillaume Antalick, Katja Suklje, John Blackman, Alain Deloire

National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588 – Wagga Wagga – New South Wales 2678 – AUSTRALIA
Wine Research Centre, University of Nova Gorica, Vipavska, 5000 Nova Gorica, Slovenia
Agricultrual Institute of Solvenia, Lubljana, 1000, Slovenia
Montpellier SupAgro, Montpellier 34060,

Contact the author

Keywords

AMOPLS, sequential harvest, berry sugar accumulation, targeted metabolomics 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Relations between soil characteristics and must and wine composition in different terroirs of Emilia Romagna (Italy)

The under-way zoning works of the Emilia viticulture have pointed out a huge variability of the features of the soils, which belong to this area.

A new AI-based system for early and accurate vineyard yield forecasting

Vineyard yield forecasting is a key issue for vintage scheduling and optimization of winemaking operations. High errors in yield forecasting can be found in the wine industry, mainly due to the high spatial variability in vineyards, strong dependency on historical yield data, insufficient use of agroclimatic data and inadequate sampling methods

Influence of grapevine rootstock/scion combination on rhizosphere and root endophytic microbiomes

Soil is a reservoir of microorganisms playing important roles in biogeochemical cycles and interacting with plants whether in the rhizosphere or in the root endosphere. The composition of the microbial communities thus impacts the plant health. Rhizodeposits (such as sugar, organic and amino acids, secondary metabolites, dead root cells …) are released by the roots and influence the communities of rhizospheric microorganisms, acting as signaling compounds or carbon sources for microbes. The composition of root exudates varies depending on several factors including genotypes. As most of the cultivated grapevines worldwide are grafted plants, the aim of this study was to explore the influence of rootstock and scion genotypes on the microbial communities of the rhizosphere and the root endosphere. The work was conducted in the GreffAdapt plot (55 rootstocks x 5 scions), in which the 275 combinations have been planted into 3 blocks designed according to the soil resistivity. Samples of roots and rhizosphere of 10 scion x rootstock combinations were first collected in May among the blocks 2 and 3. The quantities of bacteria, fungi and archaea have been assessed in the rhizosphere by quantitative PCR, and by cultivable methods for bacteria and fungi. The communities of bacteria, fungi and arbuscular mycorrhizal fungi (AMF) was analyzed by Illumina sequencing of 16S rRNA gene, ITS and 28S rRNA gene, respectively. The level of mycorrhization was also evaluated using black ink coloration of newly formed roots harvested in October. The level of bacteria, fungi and archaea was dependent on rootstock and scion genotypes. A block effect was observed, suggesting that the soil characteristics strongly influenced the microorganisms from the rhizosphere and root endosphere. High-throughput sequencing of the different target genes showed different communities of bacteria, fungi and AMF associated with the scion x rootstock combinations. Finally, all the combinations were naturally mycorrhized. The root mycorrhization intensity was influenced by the rootstock genotype, but not by the scion one. Altogether, these results suggest that both rootstock and scion genotypes influence the rhizosphere and root endophytic microbiomes. It would be interesting to analyze the biochemical composition of the rhizodeposition of these genotypes for a better understanding of the processes involved in the modulation of these microbiomes. Moreover, crossing our data with the plant agronomic characteristics could provide insights into their roles on plant fitness.

Control of microbial development in wines elaborated by carbonic maceration

Carbonic Maceration (CM) winemaking is typically used in different European regions. But It is paradoxical that being a traditional processing system and widely used in many wineries, some of the phenomena that take place and the parameters that characterize them are barely known. In this vinification system the intact grape clusters are placed in a carbon dioxide (CO2) enriched medium, and they immediately change from a respiratory metabolism to an anaerobic fermentative metabolism called intracellular fermentation, which is carried out by grape enzymes. But some grapes located in the lower zone of the tank are crushed by the weight of the ones above and release must, which is fermented by yeasts.

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.