OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Integrated multiblock data analysis for improved understanding of grape maturity and vineyard site contributions to wine composition and sensory domains

Integrated multiblock data analysis for improved understanding of grape maturity and vineyard site contributions to wine composition and sensory domains

Abstract

Much research has sought to define the complex contribution of terroir (varieties x site x cultural practices) on wine composition. This investigation applied recent advances in chemometrics to determine relative contributions of vine growth, berry maturity and site mesoclimate to wine composition and sensory profiles of Shiraz and Cabernet Sauvignon for two vintages. 

Grape maturation was monitored using a berry sugar accumulation model and wines made from sequentially harvested grapes at three stages for each variety and vintage. Comprehensive targeted grape analysis of amino acids, carotenoids, sugars, organic acids, anthocyanins and volatile compounds were combined with targeted wine volatile and non-volatile chemical measures of composition and sensory descriptive analysis. Chemometric models of balanced sample sets derived from the pool samples were used in an ANOVA multiblock framework with orthogonal projection to latent structures (Boccard and Rudaz, 2016) to elucidate the relative importance of model design factors. 

Multiple data matrices derived from the experimental design factors are subtracted from the original data matrix to obtain pure effects and interaction submatrices with structured orthogonal data. A response matrix is derived from the positive eigenvalues associated with SVD of each effect matrix and residuals are then added to each submatrix prior to kernel OPLS. Model performance evaluated from residual structure ratio (RSR), goodness of fit (R2Y) and permutation testing identified the significant factors from each model. Projection of sample scores of significant factors against scores of the residual matrix is used to assess sample clusters with confidence intervals based on Hotelling T2. 

Loadings from significant experimental factors of each model were used for hierarchical cluster analysis (HCA) with Euclidean distance measures and Wards grouping criteria. Prior to HCA scores and loadings are rotated to consistent presentation of factor levels in model plots. A conservative interpretation of loadings heat maps was considered appropriate and a summary heat map for explanatory factors is presented that enable interpretation of the impact of cultivar, site (soil x mesoclimate), grape maturity and region on grape and wine composition. The integrated data driven approach used in this investigation may be of assistance for other investigators for omics based experiments.

Ref: Boccard, J. & Rudaz, S. 2016. Anal Chim Acta. 920:18-28.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Leigh Schmidtke, Guillaume Antalick, Katja Suklje, John Blackman, Alain Deloire

National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588 – Wagga Wagga – New South Wales 2678 – AUSTRALIA
Wine Research Centre, University of Nova Gorica, Vipavska, 5000 Nova Gorica, Slovenia
Agricultrual Institute of Solvenia, Lubljana, 1000, Slovenia
Montpellier SupAgro, Montpellier 34060,

Contact the author

Keywords

AMOPLS, sequential harvest, berry sugar accumulation, targeted metabolomics 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Impact and comprehension of nitrogen and lipid nutrition on the production of fermentative aromas with different S. Cerevisiae yeasts used for spirits

In the Cognac appellation, the production of white wines is almost exclusively dedicated to elaborate Charentaise eaux-de-vie. In this sense, the quality of Cognac eaux-de-vie intrinsically depends on the quality of the base wines subjected to the distillation stage. In this context, the production of these base wines differs from those of classic white wines to release particular organoleptic properties during the distillation stage.

Biodiversity and genetic profiling of autochthonous grapevine varieties in Armenia: A key to sustainable viticulture

Armenia, as one of the ancient centers of grapevine domestication, harbors a unique repository of genetic diversity in its indigenous and wild grapevine populations, highlighting a key role in the millennia-lasting history of grape cultivation in the Southern Caucasus (Margaryan et al., 2021).

Exogenous dsRNA applications to identify novel candidate susceptibility genes to downy mildew

One of the major threats to viticulture is represented by fungal pathogens. Plasmopara viticola, an oomycete causing grapevine downy mildew, is one of the principal causes of grape production losses. The most efficient management strategies are represented by a combination of agronomical practices, fungicides’ applications, and use of resistant varieties. Plant resistance is conferred by the presence of resistance (R) genes. Opposed to them, susceptibility (S) genes are encoded by plants and exploited by pathogens to promote infection. Loss or mutation of S genes can limit the ability of pathogens to infect the host. By exploiting post-transcriptional gene silencing, known as RNA intereference (RNAi), it is possible to knock-down the expression of S genes, promoting plant resistance.

Leaf necrosis induced by the insecticide carbaryl in Vitis rupestris ‘B38’

Carbaryl is an acetylcholine esterase inhibitor-type insecticide used for pest control on grapevine. We repeatedly observed the occurrence of interveinal leaf necrosis following carbaryl spray application in a Vitis rupestris x Vitis riparia F1 hybrid progeny vineyard. Spray applications induced necrosis in this progeny under both Missouri and New York field conditions an approximate one-to-one sensitive-to-insensitive segregation ratio and with 42% concordance. Results of subsequent in vitro experiments established causality between carbaryl treatment and leaf necrosis and confirmed the pattern of segregation observed in the field. We consistently map this phenotype to a major QTL on chromosome 16 of the female parent V. rupestris ‘B38’ regardless of whether we used field or in vitro-generated phenotype data.

Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Several Uruguayan wineries have begun to produce wines with minimal intervention, to increase the sustainability of their vineyards and wines. These wines are characterized by the minimum intervention in the management of the vineyard, its harvest, vinification, conservation and aging1,2. Sulfur dioxide (SO2) is not used or is used in reduced doses, although chitosan can be substituted or supplemented1. The objective of this research is to evaluate SO2 reduction or replacement options adapted to the production of Tannat red wines with minimal intervention. Vinification of the Tannat grapes with autochthonous yeasts (LN) was carried out during the 2023 vintage.