OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Integrated multiblock data analysis for improved understanding of grape maturity and vineyard site contributions to wine composition and sensory domains

Integrated multiblock data analysis for improved understanding of grape maturity and vineyard site contributions to wine composition and sensory domains

Abstract

Much research has sought to define the complex contribution of terroir (varieties x site x cultural practices) on wine composition. This investigation applied recent advances in chemometrics to determine relative contributions of vine growth, berry maturity and site mesoclimate to wine composition and sensory profiles of Shiraz and Cabernet Sauvignon for two vintages. 

Grape maturation was monitored using a berry sugar accumulation model and wines made from sequentially harvested grapes at three stages for each variety and vintage. Comprehensive targeted grape analysis of amino acids, carotenoids, sugars, organic acids, anthocyanins and volatile compounds were combined with targeted wine volatile and non-volatile chemical measures of composition and sensory descriptive analysis. Chemometric models of balanced sample sets derived from the pool samples were used in an ANOVA multiblock framework with orthogonal projection to latent structures (Boccard and Rudaz, 2016) to elucidate the relative importance of model design factors. 

Multiple data matrices derived from the experimental design factors are subtracted from the original data matrix to obtain pure effects and interaction submatrices with structured orthogonal data. A response matrix is derived from the positive eigenvalues associated with SVD of each effect matrix and residuals are then added to each submatrix prior to kernel OPLS. Model performance evaluated from residual structure ratio (RSR), goodness of fit (R2Y) and permutation testing identified the significant factors from each model. Projection of sample scores of significant factors against scores of the residual matrix is used to assess sample clusters with confidence intervals based on Hotelling T2. 

Loadings from significant experimental factors of each model were used for hierarchical cluster analysis (HCA) with Euclidean distance measures and Wards grouping criteria. Prior to HCA scores and loadings are rotated to consistent presentation of factor levels in model plots. A conservative interpretation of loadings heat maps was considered appropriate and a summary heat map for explanatory factors is presented that enable interpretation of the impact of cultivar, site (soil x mesoclimate), grape maturity and region on grape and wine composition. The integrated data driven approach used in this investigation may be of assistance for other investigators for omics based experiments.

Ref: Boccard, J. & Rudaz, S. 2016. Anal Chim Acta. 920:18-28.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Leigh Schmidtke, Guillaume Antalick, Katja Suklje, John Blackman, Alain Deloire

National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588 – Wagga Wagga – New South Wales 2678 – AUSTRALIA
Wine Research Centre, University of Nova Gorica, Vipavska, 5000 Nova Gorica, Slovenia
Agricultrual Institute of Solvenia, Lubljana, 1000, Slovenia
Montpellier SupAgro, Montpellier 34060,

Contact the author

Keywords

AMOPLS, sequential harvest, berry sugar accumulation, targeted metabolomics 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Effect of elicitors and ripening moment on the phenolic composition of Monastrell

Grapevine (Vitis vinifera L.) is a globally cultivated crop and economically significant, particularly in the wine industry (Varela et al., 2024). Climate change is already affecting vineyards and is expected to worsen (Averbeck et al., 2019; Dupuis and Knoepfel, 2011).

The science of fungi in grapevine: An essential new book covering all aspects of fungi in viticulture

Grapevine is one of the world’s most important cultivated plants, domesticated from the wild vine over 11,000 years ago. The fungi associated with it are doubtless as old as the plant itself. Despite their co-evolution with the vine over the centuries, it was only with the invention of the microscope in the seventeenth century that fungi started to be recognised.

Study of grape-ripening process variability using mid infrared spectroscopy

To obtain a quality wine, it is necessary to collect grapes in an optimal state of maturation, so the control of the ripening process is fundamental for the viticulturist.

Measuring elemental sulfur in grape juice in relation to varietal thiol formation in Sauvignon blanc wines.

Aim: Sauvignon blanc displays a range of styles that can include prominent tropical and passionfruit aromas. Both sensory evaluation and chemical analysis have confirmed the above-average presence of ‘varietal thiols’ in the Sauvignon blanc wines from Marlborough, New Zealand.

Impact of drought stress on concentration and composition of wine proteins in Riesling

Protein haze in white wines is a major technological and economic problem of the wine industry. Field tests were carried out in steep slope vineyards planted with Riesling grapes over 3 dry growing seasons to study the effect of drought stress on the concentration of proteins in the resulting wines. Plots suffering from drought stress were compared with surrounding drip irrigated plots. Riesling grapes were processed into wines by conventional procedures. Protein amounts of the isolated wine colloids of the stressed samples were always higher than those of the watered samples(mean watered 13.8 ± 0.44, mean stressed 17.4 ± 0.40 g 100 g-1). As a consequence, higher bentonite doses were needed to achieve protein haze stability of the drought stressed treatments.