terclim by ICS banner
IVES 9 IVES Conference Series 9 FUNGAL CHITOSAN IS AN EFFICIENT ALTERNATIVE TO SULPHITES IN SPECIFIC WINEMAKING SITUATIONS

FUNGAL CHITOSAN IS AN EFFICIENT ALTERNATIVE TO SULPHITES IN SPECIFIC WINEMAKING SITUATIONS

Abstract

The most common method to prevent or eliminate microbes in wine is sulfur dioxide (SO₂) addition. However, as risk of acute allergy exists, the European Union has classified SO₂ as one of the 14 priority food allergens (EU Regulation N°1169/2011, Annex II). The legal dose admitted in both conventional and organic farming will be downgraded probably in the near future, according to consumer’s expectations. In addition, sulfur dioxide addition does not always prevent microbial spoilage, because of the emergence of tolerant/resistant strains. Winemakers thus need alternate and efficient antiseptic methods to reduce total SO₂ content in wines. The resolutions of the 7th general assembly of the International Organization of Vine and Wine (OIV/OENO 338A/2009) and the European Union (EC 53/2011) authorized the addition of fungal chitosan to reduce spoilage microorganism populations especially Brettanomyces bruxellensis. Chitosan is a partially acetylated polysaccharide of glucosamine. It is positively charged at wine pH, which allows it to interact with the microorganisms and particles present in the wine. With the trend in oenology of limiting SO₂, more and more questions arise as to the impact of fungal chitosan on other microorganisms from grapes and wine-related environment. It was shown recently that most species were affected, at least transiently, by chitosan treatment (Miot-Sertier et al. 2022). However, a high variability prevails within most species and sensitive, intermediate and tolerant strains can be observed, as well as different efficiencies depending on the wine chemical parameters or the winemaking stage when the treatment is performed.

In order to have a clear opinion on the usefulness of a chitosan treatment, we have carried out tests in various situations in which sulphites were not enough to protect the wine (presence of tolerant strains in particular). Though chitosan does not solve all the microbial spoilage issues, this study reveals that chitosane can be an interesting alternative to sulphites in certain situations. Furthermore, when the antiseptic effect is clear it seems durable and hence, wines are protected for microbial spoilage over long periods.
The study also shows that structural differences among fungal chitosans impact their efficiency. The organoleptic consequences of the treatment are also evaluated on red and white wines.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Cécile Miot-Sertier¹, Margot Paulin¹, Axel Marchal¹, Patricia Ballestra¹, Warren Albertin¹, Isabelle Masneuf Pomarède¹, Joana Coulon², Virginie Moine², Amélie Vallet-Courbin³, Julie Maupeu³, Thierry Doco⁴, Cédric Delattre5-6,Marguerite Dols-Lafargue¹

1. Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR1366, ISVV, F-33140 Villenave d’Ornon, France
2. Biolaffort, 11 rue Aristide Bergès, 33270 Floirac, France
3. Microflora-ADERA, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
4. UMR 1083, UMR Sciences pour l’Oenologie, INRA, SupAgro, UM1, 2 place Viala, F-34060 Cedex Montpellier, France
5. Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
6. Institut Universitaire de France (IUF), 1 Rue Descartes, 75000 Paris, France

Contact the author*

Keywords

Antiseptic, Spoilage, Chitosan, Sulfites

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Metabolomics for grape and wine research: exploring the contributions of amino acids to wine flavour

A critical aspect of wine quality is the overall expression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes directly contribute to wine only a small number of potent aroma compounds, and the unique sensory attributes and perceived quality of a wine result from combining 100s of metabolites of grapes, yeast and bacteria, and oak wood.

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].

IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

In Italy, in the past two decades, the rate of temperature increases (0.0369 °C per year) was slightly higher compared to the world average (0.0313 °C per year). It has also been indicated that the number and intensity of heat waves have increased considerably in the last decades. (IEA, 2022). Viticultural zones can be classified with climatic indexes. Huglin’s index (HI) considers the temperature in a definite area and has been considered as reliable to evaluate the thermal suitability for winegrape production (Zhang et al., 2023).

AGING PATTERNS OF VARIETAL VOLATILE PROFILES OF WHITE WINES: A CASE STUDY ON 18 ITALIAN VARIETAL WHITE WINES

During wine aging many compositional changes take place. In particular, aroma undergoes dramatic modifications through a wide range of reactions that to date are only partly understood. Italy owns one of the largest ampelographic heritages worldwide, with over three-hundred different varieties. Among these, many white grapes are employed for the production of dry still white wines. Some of these wines are consumed young while others are more prone to aging. For many of these wines, the aging patterns related to volatile composition are still unknown.

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103.