terclim by ICS banner
IVES 9 IVES Conference Series 9 FUNGAL CHITOSAN IS AN EFFICIENT ALTERNATIVE TO SULPHITES IN SPECIFIC WINEMAKING SITUATIONS

FUNGAL CHITOSAN IS AN EFFICIENT ALTERNATIVE TO SULPHITES IN SPECIFIC WINEMAKING SITUATIONS

Abstract

The most common method to prevent or eliminate microbes in wine is sulfur dioxide (SO₂) addition. However, as risk of acute allergy exists, the European Union has classified SO₂ as one of the 14 priority food allergens (EU Regulation N°1169/2011, Annex II). The legal dose admitted in both conventional and organic farming will be downgraded probably in the near future, according to consumer’s expectations. In addition, sulfur dioxide addition does not always prevent microbial spoilage, because of the emergence of tolerant/resistant strains. Winemakers thus need alternate and efficient antiseptic methods to reduce total SO₂ content in wines. The resolutions of the 7th general assembly of the International Organization of Vine and Wine (OIV/OENO 338A/2009) and the European Union (EC 53/2011) authorized the addition of fungal chitosan to reduce spoilage microorganism populations especially Brettanomyces bruxellensis. Chitosan is a partially acetylated polysaccharide of glucosamine. It is positively charged at wine pH, which allows it to interact with the microorganisms and particles present in the wine. With the trend in oenology of limiting SO₂, more and more questions arise as to the impact of fungal chitosan on other microorganisms from grapes and wine-related environment. It was shown recently that most species were affected, at least transiently, by chitosan treatment (Miot-Sertier et al. 2022). However, a high variability prevails within most species and sensitive, intermediate and tolerant strains can be observed, as well as different efficiencies depending on the wine chemical parameters or the winemaking stage when the treatment is performed.

In order to have a clear opinion on the usefulness of a chitosan treatment, we have carried out tests in various situations in which sulphites were not enough to protect the wine (presence of tolerant strains in particular). Though chitosan does not solve all the microbial spoilage issues, this study reveals that chitosane can be an interesting alternative to sulphites in certain situations. Furthermore, when the antiseptic effect is clear it seems durable and hence, wines are protected for microbial spoilage over long periods.
The study also shows that structural differences among fungal chitosans impact their efficiency. The organoleptic consequences of the treatment are also evaluated on red and white wines.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Cécile Miot-Sertier¹, Margot Paulin¹, Axel Marchal¹, Patricia Ballestra¹, Warren Albertin¹, Isabelle Masneuf Pomarède¹, Joana Coulon², Virginie Moine², Amélie Vallet-Courbin³, Julie Maupeu³, Thierry Doco⁴, Cédric Delattre5-6,Marguerite Dols-Lafargue¹

1. Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR1366, ISVV, F-33140 Villenave d’Ornon, France
2. Biolaffort, 11 rue Aristide Bergès, 33270 Floirac, France
3. Microflora-ADERA, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
4. UMR 1083, UMR Sciences pour l’Oenologie, INRA, SupAgro, UM1, 2 place Viala, F-34060 Cedex Montpellier, France
5. Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
6. Institut Universitaire de France (IUF), 1 Rue Descartes, 75000 Paris, France

Contact the author*

Keywords

Antiseptic, Spoilage, Chitosan, Sulfites

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet.

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine.

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.

THE EFFECT OF DIFFERENT TERROIRS ON AROMA COMPOUNDS OF ‘KALECIK KARASI’ WINES

Kalecik Karası is a domestic grape variety of Turkey, originating from Kalecik district, 80 km from Ankara. Although there is no definite evidence, it is known that it was used in wine production by many civilizations that lived in the Anatolian region, especially the Hittites. Compared to other black wine grapes, it stands out with its low tannin content, rich fruity aroma and complex structure. In good vintages, red fruits such as strawberries, cherries and raspberries stand out in the aroma profile. Although its structure is elegant, it has the potential to age and develop similar to the ‘Pinot Noir’ wine of the Burgundy region. This offers a complex aroma structure including red flowers, earth and ripe fruits.