terclim by ICS banner
IVES 9 IVES Conference Series 9 RED WINE AGING WITHOUT SO₂: WHAT IMPACT ON MICROBIAL COMMUNITY?

RED WINE AGING WITHOUT SO₂: WHAT IMPACT ON MICROBIAL COMMUNITY?

Abstract

Nowadays, the use of food preservatives is controversial, SO2 being no exception. Microbial communities have been particularly studied during the prefermentary and fermentation stages in a context of without added SO2. However, microbial risks associated with SO2 reduction or absence, particularly during the wine aging process, have so far been little studied.  The microbiological control of wine aging is a key issue for winemakers wishing to produce wines without added SO2. The aim of the present study is to evaluate the impact of different wine aging strategies according to the addition or not of SO2 on the microbiological population levels and diversity.

In 2021 and 2022, microbial community were monitored on merlot red wines during the wine aging process with different SO2 management and no SO2 addition. An experimental design (30L) was set up in triplicate and samples were collected from vatting to bottling to perform microbial analysis: population levels were monitored by plating on agar selective media for cultivable yeasts, acetic and lactic acid bacteria. From a subset of colonies obtained on solid medium, identifications at species level were made using the MALDI-TOF MS combining with a homemade database created by the laboratory.

In 2021, our results showed that without SO2, significant higher population levels of yeast and bacteria comparing with the sulphiting wines were present during the wine aging process. As expected, the higher species diversity was found at vatting. During the winemaking process, different species of lactic acid bacteria (10), acetic acid bacteria (3) and yeasts (8) were identified. Surprisingly, the effectiveness of SO2 addition at the end of MLF on the lactic acid bacteria showed contrasting results considering initial SO2 addition or not at vatting: population levels were significantly lower when SO2 was added only after malolactic fermentation. Our results regarding the impact of SO2 management during the winemaking process could provide opportunities for winemakers to reduce SO2 levels.  Furthermore, for the first time, microbial communities have been monitored throughout the winemaking process, in a reduced or without added SO2 context.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Sara Windholtz1,2, Julie Maupeu3, Amelie Vallet Courbin3, Marine Lucas3, Valerian Duarte4, Anne Hubert5, Stéphane Becquet5, Emmanuel Vinsonneau4, Isabelle Masneuf Pomarède1,2

  1. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
  2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
  3. Microflora-ADERA, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366 OENOLOGIE, ISVV, F33882 Villenave d’Ornon, France
  4. Institut Français de la Vigne et du Vin, Blanquefort, France
  5. Syndicat des Vignerons Bio Nouvelle-Aquitaine, Montagne, France

Contact the author*

Keywords

wine without SO₂, microbial communities, MALDI-TOF MS, malolactic fermentation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

SIP and save the planet: a sensory and consumer exploration of australian wines made from potentially drought-tolerant white wine grapes

In order to attenuate the effects of climate change on the ability to cultivate quality wine grape vines in Australia, it is essential to adapt to the projected less favourable Australian climate scenarios. One response may be to convert a portion of the current grapevine plantings to those varieties that demand less water and can tolerate increased heat. This investigation aimed to (i) generate sensory profiles and (ii) obtain knowledge about Australian wine consumers’ preferences and opinions of Australian wines made from potentially drought tolerant, white wine grape varieties not traditionally cultivated in Australia. A Rate-All-That-Apply (RATA) sensory panel (n = 49) generated sensory profiles of 44 commercial white wines made from 7 different white grape varieties (Arinto, Fiano, Garganega, Greco, Verdejo, Verdelho and Vermentino), plus two benchmark examples each of an Australian Riesling, Pinot Gris and Chardonnay wine.

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated.