OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Can wine composition predict quality? A metabolomics approach to assessing Pinot noir wine quality as rated by experts

Can wine composition predict quality? A metabolomics approach to assessing Pinot noir wine quality as rated by experts

Abstract

The perception of wine quality is determined by the assessment of multiple sensory stimuli, including aroma, taste, mouthfeel and visual aspects. With so many different parameters contributing to the overall perception of wine quality, it is important to consider the contribution of all metabolites in a wine when attempting to relate composition to quality. Presently, links between wine composition and quality are largely anecdotal, with winemakers relying on their experience, refined palates, and well established measures of wine quality such as alcohol content, phenolic composition and the absence of major faults to produce high quality wines. 

In this study, we assessed relationships between wine composition and quality ratings determined by wine experts. Forty-eight Pinot noir wines from two vintages and several geographic regions around the world were subjected to sensory and chemical analysis. A panel of experts made up of wine industry professionals (n = 24) assessed the quality of the wines, as well as a number of other sensory attributes. The wines were analysed by untargeted reverse phase UHPLC-MS, and untargeted HS-SPME-GC-TOF-MS to obtain the non-volatile and volatile profiles of each wine respectively. Partial least squares regression of the non-volatile, volatile and combined chemical profiles, together with ratings of wine quality by experts, showed that the non-volatile profiles were more strongly correlated with perceived wine quality than the volatile profiles. Some new correlations between wine metabolites and quality ratings were found: several dipeptides and unsaturated fatty acids were positively associated with wine quality, and a volatile acetamide was strongly negatively correlated. Both the non-volatile wine matrix and the volatile profile of a wine should be considered in the relationship between Pinot noir wine composition and quality.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Emma Sherman, Margaret Coe, Claire Grose, Damian Martin, Silas G. Villas-Boas, David R. Greenwood

Plant and Food Research Center, 120 Mt Albert Road – Auckland – New Zealand

Contact the author

Keywords

Wine quality, Pinot noir, Metabolomics, Sensory 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Unveiling the secrets of catechin: insights from NMR spectroscopy

Catechins, a class of flavonoids found in foods and beverages such as wine and tea, exhibit potent antioxidant properties that contribute to various health benefits.[1]

A general phenological model for characterising grape vine flowering and véraison

The timing of phenology is critical if grape quality potential is to be optimized. Phenological process based models are used to predict phenology. In this study, three different models

SO2 consumption in white wine oxidation: approaches to low input vinifications based on rapid electrochemical analyses and predictive enology

Oxidative stability is a critical factor in maintaining wine quality during its shelf-life. SO₂ is commonly added to wine due to its strong antioxidant activity, although there is a general push to reduce SO₂ use in vinification.

Influence of Lactiplantibacillus plantarum and Oenococcus oeni strains on sensory profile of sicilian nero d’avola wine after malolactic fermentation.

AIM: Malolactic fermentation is a process of decarboxylation of L-malic acid into L-lactic acid and carbon dioxide that leads to deacidification, modification of odors and flavors of wines [1]

Microbial metagenomics of vineyard soils and wine terroir

Aims: The aims of this study were to (i) characterize bacterial and fungal communities in selected Australian vineyard soils and (ii) determine if the soil microbiome composition and diversity varied between different zones within a vineyard.