terclim by ICS banner
IVES 9 IVES Conference Series 9 WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

Abstract

Wine aroma is influenced by various factors, from agricultural practices in the vineyard to the enological choices made by winemakers throughout the vinification process. Spontaneous fermentations have a characteristically deeper complexity of aromas when compared to fermentations that have been inoculated with Saccharomyces (S.) cerevisiae because of the diversity of microflora naturally present on grape skins. Non-Saccharomyces yeast are being extensively studied for their ability to positively contribute to wine aroma and flavour. These yeasts are known to liberate more bound volatile compounds present in grape must than S. cerevisiae through the enzymatic action of β-glucosidases and β-lyases1Torulaspora (T.) delbrueckii is known to stand out among these nonconventional yeasts by increasing the content of esters, terpenes and thiols in wine fermentations, together with low production of acetic acid, hydrogen sulfide and acetaldehyde.

In a previous study using Pinot Noir grapes from the Okanagan Valley (BC, Canada)2, a collection of non-Saccharomyces yeasts was isolated from late-stage spontaneous lab fermentations. These yeasts were screened for their fermentative performance based on residual sugar, ethanol concentration and production of non-volatiles such as glycerol and acetic acid in single fermentations using Chardonnay juice. From these, two strains of T. delbrueckii were selected for further analysis. The aim of the present work was to examine oenological traits such as ethanol, sulfite, and copper sulfate resistance for the two T. delbrueckii Okanagan Valley strains, the T. delbrueckii reference strain CBS1146, the commercial T. delbrueckii strain Zymaflore Alpha and a control S. cerevisiae strain. These five strains were also used to perform single yeast fermentations in Muscat juice. Non-volatile compounds were quantified by HPLC/RID and analyzed by ANOVA with no significant differences in residual sugars, ethanol and glycerol production, while CBS1146 displayed lower acetic acid than the other 4 strains. Volatiles such as terpenes, primary alcohols and esters were also semi-quantified by SPME-GC/MS, followed by Partial Least Squares-Discriminant Analysis. Differences were observed among the strains in aroma compounds including limonene, γ-terpinene, α-terpineol, ocimene, phenylethyl alcohol and 2-phenethyl acetate. This work will add to developing research on T. delbrueckii from the perspective of BC and Canadian wines.

 

  1. Belda, I., Ruiz, J., Alastruey-Izquierdo, A., Navascues, E., Marquina, D., & Santos, A. (2016). Unraveling the enzymatic basis of wine “flavorome”: A phylo-functional study of wine related yeast species. Frontier in Microbiology, 7, 1–13. DOI: 10.3389/fmicb.2016.00012
  2. Cheng, E., Martiniuk, J. T., Hamilton, J., McCarthy, G., Castellarin, S. D., & Measday, V. (2020). Characterization of Sub-Regional Variation in Saccharomyces Populations and Grape Phenolic Composition in Pinot Noir Vineyards of a Canadian Wine Region. Frontiers in genetics, 11, 908. DOI: 10.3389/fgene.2020.00908

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Joana Pico1, Elia Castellanos1, Simone D. Castellarin1, Vivien Measday1

  1. Wine Research Centre, University of British Columbia

Contact the author*

Keywords

Non-Saccharomyces yeast, Wine aroma, Fermentation metabolites, Volatile compounds

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FUNGAL CHITOSAN IS AN EFFICIENT ALTERNATIVE TO SULPHITES IN SPECIFIC WINEMAKING SITUATIONS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

Temperature control is crucial in wine production, starting from grape harvest to the bottled wine storage. Climate change and global warming affect the timing of grape ripening, and harvesting is often done during hot summer days, influencing berry integrity, secondary metabolites potential, enzyme and oxidation phenomena, and even fermentation kinetics. To curb this phenomenon, pre-fermentative cold storage can help preserve the grapes and possibly increase the concentration of key secondary metabolites. In this study, the effect of grape pre-fermentative cold storage was assessed on the ‘Moscato bianco’ white grape cultivar, known for its varietal terpenes (65% of free terpenes represented by linalool and its derivatives) and widely used in Piedmont (Italy) to produce Asti DOCG wines.

MOUSY OFF-FLAVOURS IN WINES: UNVEILING THE MICROORGANISMS BEHIND IT

Taints and off-flavours are one of the major concerns in the wine industry and even if the issues provoked by them are harmless, they can still have a negative impact on the quality or on the visual perception of the consumer. Nowadays, the frequency of occurrence of mousy off-flavours in wines has increased.
The reasons behind this could be the significant decrease in sulphur dioxide addition during processing, the increase in pH or even the trend for spontaneous fermentation in wine. This off-flavour is associated with Brettanomyces bruxellensis or some lactic acid bacteria metabolisms.

UNRAVELLING THE ROLE OF LACTIC ACID BACTERIA ON SPARKLING WINE ELABORATION THROUGH METABOLOMICS APPROACH

Xinomavro is a red grape variety from Northern Greece (Protected Designation of Origin), known for the nice acidities, perfectly appropriate for sparkling wine production (Rosé and Blanc de Noir). The elabo- ration of sparkling wine requires technical as well as scientific skills. Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown.
The present work focuses (i) on the population diversity of lactic acid bacteria isolated from sparkling wines and (ii) on the technological effect of the species during sparkling wine elaboration.

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.