terclim by ICS banner
IVES 9 IVES Conference Series 9 WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

Abstract

Wine aroma is influenced by various factors, from agricultural practices in the vineyard to the enological choices made by winemakers throughout the vinification process. Spontaneous fermentations have a characteristically deeper complexity of aromas when compared to fermentations that have been inoculated with Saccharomyces (S.) cerevisiae because of the diversity of microflora naturally present on grape skins. Non-Saccharomyces yeast are being extensively studied for their ability to positively contribute to wine aroma and flavour. These yeasts are known to liberate more bound volatile compounds present in grape must than S. cerevisiae through the enzymatic action of β-glucosidases and β-lyases1Torulaspora (T.) delbrueckii is known to stand out among these nonconventional yeasts by increasing the content of esters, terpenes and thiols in wine fermentations, together with low production of acetic acid, hydrogen sulfide and acetaldehyde.

In a previous study using Pinot Noir grapes from the Okanagan Valley (BC, Canada)2, a collection of non-Saccharomyces yeasts was isolated from late-stage spontaneous lab fermentations. These yeasts were screened for their fermentative performance based on residual sugar, ethanol concentration and production of non-volatiles such as glycerol and acetic acid in single fermentations using Chardonnay juice. From these, two strains of T. delbrueckii were selected for further analysis. The aim of the present work was to examine oenological traits such as ethanol, sulfite, and copper sulfate resistance for the two T. delbrueckii Okanagan Valley strains, the T. delbrueckii reference strain CBS1146, the commercial T. delbrueckii strain Zymaflore Alpha and a control S. cerevisiae strain. These five strains were also used to perform single yeast fermentations in Muscat juice. Non-volatile compounds were quantified by HPLC/RID and analyzed by ANOVA with no significant differences in residual sugars, ethanol and glycerol production, while CBS1146 displayed lower acetic acid than the other 4 strains. Volatiles such as terpenes, primary alcohols and esters were also semi-quantified by SPME-GC/MS, followed by Partial Least Squares-Discriminant Analysis. Differences were observed among the strains in aroma compounds including limonene, γ-terpinene, α-terpineol, ocimene, phenylethyl alcohol and 2-phenethyl acetate. This work will add to developing research on T. delbrueckii from the perspective of BC and Canadian wines.

 

  1. Belda, I., Ruiz, J., Alastruey-Izquierdo, A., Navascues, E., Marquina, D., & Santos, A. (2016). Unraveling the enzymatic basis of wine “flavorome”: A phylo-functional study of wine related yeast species. Frontier in Microbiology, 7, 1–13. DOI: 10.3389/fmicb.2016.00012
  2. Cheng, E., Martiniuk, J. T., Hamilton, J., McCarthy, G., Castellarin, S. D., & Measday, V. (2020). Characterization of Sub-Regional Variation in Saccharomyces Populations and Grape Phenolic Composition in Pinot Noir Vineyards of a Canadian Wine Region. Frontiers in genetics, 11, 908. DOI: 10.3389/fgene.2020.00908

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Joana Pico1, Elia Castellanos1, Simone D. Castellarin1, Vivien Measday1

  1. Wine Research Centre, University of British Columbia

Contact the author*

Keywords

Non-Saccharomyces yeast, Wine aroma, Fermentation metabolites, Volatile compounds

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

USE OF 13C CP/MAS NMR AND EPR SPECTROSCOPIC TECHNIQUES TO CHARACTERIZE MACROMOLECULAR CHANGES IN OAK WOOD(QUERCUS PETRAEA) DURING TOASTING

For coopers, toasting process is considered a crucial step in barrel production during which oak wood (Q. petraea) develops several aromatic nuances released to the wine during its maturation. Toasting consists of applying different degrees of heat to a barrel for a specific period. As the temperature increases, thermal degradation of oak wood structure produces a huge range of chemical compounds. Many studies have identified the main key aroma volatile compounds (whisky-lactone, furfural, eugenol, guaiacol, vanillin). However, detailed information on how the chemical structure of oak wood degrades with increasing toasting level is still lacking.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV.
Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.

Metabolomics for grape and wine research: exploring the contributions of amino acids to wine flavour

A critical aspect of wine quality is the overall expression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components.
Grapes directly contribute to wine only a small number of potent aroma compounds, and the unique
sensory attributes and perceived quality of a wine result from combining 100s of metabolites of grapes, yeast and bacteria, and oak wood.

OENOLOGICAL POTENTIAL OF AUTOCHTHONOUS SACCHAROMYCES CEREVISIAE STRAINS AND THEIR EFFECT ON THE PRODUCTION OF TYPICAL SAVATIANO WINES

Due to the global demand for terroir wines, the winemaking industry has focused attention on exploiting the local yeast microflora of each wine growing region to express the regional character and enhance the sensory profile of wines such as varietal typicity and aroma complexity. The objective of the present study was to isolate and compare the indigenous strains of Saccharomyces cerevisiae present in different vineyards in the Mesogeia – Attiki wine region (Greece), evaluate their impact on chemical composition and sensory profile of Savatiano wines and select the most suitable ones for winemaking process.