terclim by ICS banner
IVES 9 IVES Conference Series 9 WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

Abstract

Wine aroma is influenced by various factors, from agricultural practices in the vineyard to the enological choices made by winemakers throughout the vinification process. Spontaneous fermentations have a characteristically deeper complexity of aromas when compared to fermentations that have been inoculated with Saccharomyces (S.) cerevisiae because of the diversity of microflora naturally present on grape skins. Non-Saccharomyces yeast are being extensively studied for their ability to positively contribute to wine aroma and flavour. These yeasts are known to liberate more bound volatile compounds present in grape must than S. cerevisiae through the enzymatic action of β-glucosidases and β-lyases1Torulaspora (T.) delbrueckii is known to stand out among these nonconventional yeasts by increasing the content of esters, terpenes and thiols in wine fermentations, together with low production of acetic acid, hydrogen sulfide and acetaldehyde.

In a previous study using Pinot Noir grapes from the Okanagan Valley (BC, Canada)2, a collection of non-Saccharomyces yeasts was isolated from late-stage spontaneous lab fermentations. These yeasts were screened for their fermentative performance based on residual sugar, ethanol concentration and production of non-volatiles such as glycerol and acetic acid in single fermentations using Chardonnay juice. From these, two strains of T. delbrueckii were selected for further analysis. The aim of the present work was to examine oenological traits such as ethanol, sulfite, and copper sulfate resistance for the two T. delbrueckii Okanagan Valley strains, the T. delbrueckii reference strain CBS1146, the commercial T. delbrueckii strain Zymaflore Alpha and a control S. cerevisiae strain. These five strains were also used to perform single yeast fermentations in Muscat juice. Non-volatile compounds were quantified by HPLC/RID and analyzed by ANOVA with no significant differences in residual sugars, ethanol and glycerol production, while CBS1146 displayed lower acetic acid than the other 4 strains. Volatiles such as terpenes, primary alcohols and esters were also semi-quantified by SPME-GC/MS, followed by Partial Least Squares-Discriminant Analysis. Differences were observed among the strains in aroma compounds including limonene, γ-terpinene, α-terpineol, ocimene, phenylethyl alcohol and 2-phenethyl acetate. This work will add to developing research on T. delbrueckii from the perspective of BC and Canadian wines.

 

  1. Belda, I., Ruiz, J., Alastruey-Izquierdo, A., Navascues, E., Marquina, D., & Santos, A. (2016). Unraveling the enzymatic basis of wine “flavorome”: A phylo-functional study of wine related yeast species. Frontier in Microbiology, 7, 1–13. DOI: 10.3389/fmicb.2016.00012
  2. Cheng, E., Martiniuk, J. T., Hamilton, J., McCarthy, G., Castellarin, S. D., & Measday, V. (2020). Characterization of Sub-Regional Variation in Saccharomyces Populations and Grape Phenolic Composition in Pinot Noir Vineyards of a Canadian Wine Region. Frontiers in genetics, 11, 908. DOI: 10.3389/fgene.2020.00908

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Joana Pico1, Elia Castellanos1, Simone D. Castellarin1, Vivien Measday1

  1. Wine Research Centre, University of British Columbia

Contact the author*

Keywords

Non-Saccharomyces yeast, Wine aroma, Fermentation metabolites, Volatile compounds

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

MOUSY OFF-FLAVOURS IN WINES: UNVEILING THE MICROORGANISMS BEHIND IT

Taints and off-flavours are one of the major concerns in the wine industry and even if the issues provoked by them are harmless, they can still have a negative impact on the quality or on the visual perception of the consumer. Nowadays, the frequency of occurrence of mousy off-flavours in wines has increased. The reasons behind this could be the significant decrease in sulphur dioxide addition during processing, the increase in pH or even the trend for spontaneous fermentation in wine. This off-flavour is associated with Brettanomyces bruxellensis or some lactic acid bacteria metabolisms.

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification.

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1].

METHYL SALICYLATE: A TRENDY COMPOUND MARKER OF ZELEN, A UNIQUE SLOVENIAN VARIETY

The wine market interest for autochthonous varieties, particularly from less known wine regions, has significantly raised in the past few years. In that context, Slovenia, a small country from central Europe with a long winemaking tradition, is getting more and more attention, particularly through its range of unique regional varieties. Among them, Zelen, meaning “green” in Slovene, can only be found in the Vipava valley region, located on the western side of the country, near the border with Italy. When they are young, Zelen wines display very singular aromas reminiscent of rosemary, sage and white fruit. Despite its uniqueness, Zelen wine aromatic typicality is poorly documented in the literature.

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).