terclim by ICS banner
IVES 9 IVES Conference Series 9 WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

Abstract

Wine aroma is influenced by various factors, from agricultural practices in the vineyard to the enological choices made by winemakers throughout the vinification process. Spontaneous fermentations have a characteristically deeper complexity of aromas when compared to fermentations that have been inoculated with Saccharomyces (S.) cerevisiae because of the diversity of microflora naturally present on grape skins. Non-Saccharomyces yeast are being extensively studied for their ability to positively contribute to wine aroma and flavour. These yeasts are known to liberate more bound volatile compounds present in grape must than S. cerevisiae through the enzymatic action of β-glucosidases and β-lyases1Torulaspora (T.) delbrueckii is known to stand out among these nonconventional yeasts by increasing the content of esters, terpenes and thiols in wine fermentations, together with low production of acetic acid, hydrogen sulfide and acetaldehyde.

In a previous study using Pinot Noir grapes from the Okanagan Valley (BC, Canada)2, a collection of non-Saccharomyces yeasts was isolated from late-stage spontaneous lab fermentations. These yeasts were screened for their fermentative performance based on residual sugar, ethanol concentration and production of non-volatiles such as glycerol and acetic acid in single fermentations using Chardonnay juice. From these, two strains of T. delbrueckii were selected for further analysis. The aim of the present work was to examine oenological traits such as ethanol, sulfite, and copper sulfate resistance for the two T. delbrueckii Okanagan Valley strains, the T. delbrueckii reference strain CBS1146, the commercial T. delbrueckii strain Zymaflore Alpha and a control S. cerevisiae strain. These five strains were also used to perform single yeast fermentations in Muscat juice. Non-volatile compounds were quantified by HPLC/RID and analyzed by ANOVA with no significant differences in residual sugars, ethanol and glycerol production, while CBS1146 displayed lower acetic acid than the other 4 strains. Volatiles such as terpenes, primary alcohols and esters were also semi-quantified by SPME-GC/MS, followed by Partial Least Squares-Discriminant Analysis. Differences were observed among the strains in aroma compounds including limonene, γ-terpinene, α-terpineol, ocimene, phenylethyl alcohol and 2-phenethyl acetate. This work will add to developing research on T. delbrueckii from the perspective of BC and Canadian wines.

 

  1. Belda, I., Ruiz, J., Alastruey-Izquierdo, A., Navascues, E., Marquina, D., & Santos, A. (2016). Unraveling the enzymatic basis of wine “flavorome”: A phylo-functional study of wine related yeast species. Frontier in Microbiology, 7, 1–13. DOI: 10.3389/fmicb.2016.00012
  2. Cheng, E., Martiniuk, J. T., Hamilton, J., McCarthy, G., Castellarin, S. D., & Measday, V. (2020). Characterization of Sub-Regional Variation in Saccharomyces Populations and Grape Phenolic Composition in Pinot Noir Vineyards of a Canadian Wine Region. Frontiers in genetics, 11, 908. DOI: 10.3389/fgene.2020.00908

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Joana Pico1, Elia Castellanos1, Simone D. Castellarin1, Vivien Measday1

  1. Wine Research Centre, University of British Columbia

Contact the author*

Keywords

Non-Saccharomyces yeast, Wine aroma, Fermentation metabolites, Volatile compounds

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHARACTERIZATION OF THE VOLATILE COMPOUNDS PROFILE OF COMMERCIAL GRAPPAS OBTAINED FROM THE POMACE OF AMARONE WINES

Grappa is a traditional Italian alcoholic beverage, with an alcohol content generally between 40-60% vol., obtained from the distillation of grape pomace used for the production of wine. Grappa are often aged in wooden barrels. There are various types of grappa: young, aromatic, aged, extra-aged depending on whether the distillate comes from aromatic vines or is aged in wooden barrels for shorter or longer periods. There is also flavored grappa if herbs, fruit or roots are added. All this makes it an extremely heterogeneous product both from an organoleptic and compositional point of view.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).

AROMA AND SENSORY CHARACTERIZATION OF XINOMAVRO RED WINES FROM DIFFERENT GREEK PROTECTED DESIGNATIONS OF ORIGIN, EFFECT OF TERROIR CHARACTERISTICS

The quality of wines has often been associated with their geographical area of production. The aim of this work was to characterize Protected Designation of Origin (PDO) Xinomavro red wines from different geographical areas of Amyndeon and Naoussa in Northern Greece, elaborated with variables that contribute to their differentiation, such as soil characteristics, altitude, monthly average temperature and rainfall.
Xinomavro fruit parcels from different vineyards within the two PDO zones (5 PDO Naoussa and 6 PDO Amyndeon) were vinified following a standard winemaking process. A total of 25 aroma compounds were quantified using gas chromatography-mass spectrometry (GC-MS) with simultaneous full scan and selected ion monitoring for data recording, and odor activity values (OAVs) were determined.

IMPACT OF MINERAL AND ORGANIC NITROGEN ADDITION ON ALCOHOLIC FERMENTATION WITH S. CEREVISIAE

During alcoholic fermentation, nitrogen is one of essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of and wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (YAN) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species and leads to economic losses. Currently, grape musts are often characterized by low YAN concentration and an increase of sugars concentration due to global warming, making alcoholic fermentations even more difficult. YAN depletion can be corrected by addition of inorganic (ammonia) or organic (yeast derivatives products) nitrogen during alcoholic fermentation.

PINKING PHENOMENA ON WHITE WINES: RELATION BETWEEN PINKING SUSCEPTIBILITY INDEX (PSI) AND WINE ANTHOCYANINS CONTENT

Pinking is the emergence of pink tones in white wines exclusively produced from white grape varieties, known as pinking phenomena for many years. Pinking is essentially appeared when white wines are produced under reducing conditions [1,2,3]. Pinking usually occurs after bottling and storage of white wines, but its appearance has also been described after alcoholic fermentation or even as soon as the grape must is extracted [4]. Therefore, the purpose of this work was to investigate the existence of an-thocyanins in white wines made from different white grape varieties and grown locations and critically evaluate the most common method used for predicting pinking appearance in white wines: the Pinking Susceptibility Index (PSI).