terclim by ICS banner
IVES 9 IVES Conference Series 9 WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

Abstract

Malolactic fermentation (MLF) is a desired process in red and acidic white wines, after alcoholic fermentation (AF), carried out by the lactic acid bacterium (LAB) Oenococcus oeni. The advantages are an increase of pH, microbiological stabilization and organoleptic improvement of the final wine. However, the presence of stress factors such as ethanol, low pH, high total SO2, lack of nutrients and presence of inhibitors, could affect the successful completion of MLF [1]. Changes in amino acid composition and deficiencies in peptides after AF, showed that MLF can be delayed, signaling its importance for bacterial growth and L-malic acid degradation during MLF [2].

Wine lees accumulated after fermentation, contain approximately 25% of dried matter, that consists of 25 to 35% tartrate salts, 35 to 45% microorganisms (predominantly yeasts) and 30 to 40% organic residues [3]. During vinification, through yeast autolysis there is a release of nitrogen compounds that could be beneficial for LAB [4]. The monitorization of nitrogen compounds during MLF and aging on lees in red wine with O.oeni  has revealed the breaking down of peptides and rise in free amino acid concentration, supporting the idea of proteolytic activity [5].

The aim of the present work was to observe the effect of the addition of different wine lees, produced in the vintage 2022 in the cellar (Mas dels Frares, Tarragona, Spain) by different vinification processes, on MLF.  Protein concentration, primary amino nitrogen, free amino acids and ammonia were determined in wine lees coming from red and white wine with different inoculation strategies and fermenting temperatures. The ones presenting greater differences in nitrogen compounds composition were selected for the addition in synthetic wine with pH 3.5, ethanol 12% (v/v) and low nitrogen content. MLFs were carried out at 20 °C with two different strains of O.oeni showing differences in MLF performance. Changes in nitrogen compounds during MLF were evaluated. Under most of the conditions, the lees addition (1 g/L) produced a reduction in the MLF duration in comparison with the control condition. This effect is bacteria strain and lees dependent. Overall, it was confirmed that the addition of wine lees could be beneficial. This effect could be linked to the proteins and amino acids input.

 

  1. Sumby, K.M., Bartle, L., Grbin, P.R., Jiranek, V., 2019. Measures to improve wine malolactic fermentation. Appl Microbiol Biotechnol 103, 2033–2051. https://doi.org/10.1007/s00253-018-09608-8
  2. Guilloux-Benatier, M., Remize, F., Gal, L., Guzzo, J., Alexandre, H., 2006. Effects of yeast proteolytic activity on Oenococcus oeni and malolactic fermentation. FEMS Microbiology Letters 263, 183–188. https://doi.org/10.1111/j.1574-6968.2006.00417.x
  3. Renouil, Y. and Feret, C., 1988. Dictionnaire du vin. Ed. Sezame, Boulogne sur Seine.
  4. Martínez-Rodríguez, A.J., Polo, M.C., 2000. Characterization of the Nitrogen Compounds Released during Yeast Autolysis in a Model Wine System. J. Agric. Food Chem. 48, 1081–1085. https://doi.org/10.1021/jf991047a
  5. Alcaide-Hidalgo, J.M., Moreno-Arribas, M.V., Polo, M.C., Pueyo, E., 2008. Partial characterization of peptides from red wines. Changes during malolactic fermentation and ageing with lees. Food Chemistry 107, 622–630. https://doi.org/10.1016/j.foodchem.2007.08.054

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jacqueline Rodriguez Rey1, Montserrat Poblet2, Albert Bordons1, Nicolas Rozès2, Cristina Reguant1
1.Grup de Biotecnologia Enològica, Facultat d’Enologia, Universitat Rovira i Virgili
2.Grup de Biotecnologia Microbiana dels Aliments. Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Univer-sitat Rovira i Virgili

Contact the author*

Keywords

wine lees, malolactic fermentation, Oenococcus oeni, nitrogen compounds

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

It is a well-established fact that premature oxidation is noxious for wine aromatic quality and longevity. Although some oxidation-related aroma molecules have been previously identified, there are not works carrying out systematic research about the changes in the profiles of odour-active volatiles during wine oxidation.

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.

THE EFFECT OF PRE-FERMENTATIVE GLYPHOSATE ADDITION ON THE METABOLITE PROFILE OF WINE

The synthetic herbicide glyphosate has been used extensively in viticulture over many decades to combat weeds. Despite this, the possible influence of residual glyphosate on both the alcoholic fermentation of grape juice and the subsequent metabolite profile of wines has not been investigated. In this study, Pinot noir juice supplemented with different concentrations of glyphosate (0 µg L-1, 10 µg L-1 and 1000 µg L-1) was fermented with commercial Saccharomyces cerevisiae yeast strains. Using a combination of analytical methods, 80 metabolites were quantified in the resulting wines.

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].