terclim by ICS banner
IVES 9 IVES Conference Series 9 WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

Abstract

Malolactic fermentation (MLF) is a desired process in red and acidic white wines, after alcoholic fermentation (AF), carried out by the lactic acid bacterium (LAB) Oenococcus oeni. The advantages are an increase of pH, microbiological stabilization and organoleptic improvement of the final wine. However, the presence of stress factors such as ethanol, low pH, high total SO2, lack of nutrients and presence of inhibitors, could affect the successful completion of MLF [1]. Changes in amino acid composition and deficiencies in peptides after AF, showed that MLF can be delayed, signaling its importance for bacterial growth and L-malic acid degradation during MLF [2].

Wine lees accumulated after fermentation, contain approximately 25% of dried matter, that consists of 25 to 35% tartrate salts, 35 to 45% microorganisms (predominantly yeasts) and 30 to 40% organic residues [3]. During vinification, through yeast autolysis there is a release of nitrogen compounds that could be beneficial for LAB [4]. The monitorization of nitrogen compounds during MLF and aging on lees in red wine with O.oeni  has revealed the breaking down of peptides and rise in free amino acid concentration, supporting the idea of proteolytic activity [5].

The aim of the present work was to observe the effect of the addition of different wine lees, produced in the vintage 2022 in the cellar (Mas dels Frares, Tarragona, Spain) by different vinification processes, on MLF.  Protein concentration, primary amino nitrogen, free amino acids and ammonia were determined in wine lees coming from red and white wine with different inoculation strategies and fermenting temperatures. The ones presenting greater differences in nitrogen compounds composition were selected for the addition in synthetic wine with pH 3.5, ethanol 12% (v/v) and low nitrogen content. MLFs were carried out at 20 °C with two different strains of O.oeni showing differences in MLF performance. Changes in nitrogen compounds during MLF were evaluated. Under most of the conditions, the lees addition (1 g/L) produced a reduction in the MLF duration in comparison with the control condition. This effect is bacteria strain and lees dependent. Overall, it was confirmed that the addition of wine lees could be beneficial. This effect could be linked to the proteins and amino acids input.

 

  1. Sumby, K.M., Bartle, L., Grbin, P.R., Jiranek, V., 2019. Measures to improve wine malolactic fermentation. Appl Microbiol Biotechnol 103, 2033–2051. https://doi.org/10.1007/s00253-018-09608-8
  2. Guilloux-Benatier, M., Remize, F., Gal, L., Guzzo, J., Alexandre, H., 2006. Effects of yeast proteolytic activity on Oenococcus oeni and malolactic fermentation. FEMS Microbiology Letters 263, 183–188. https://doi.org/10.1111/j.1574-6968.2006.00417.x
  3. Renouil, Y. and Feret, C., 1988. Dictionnaire du vin. Ed. Sezame, Boulogne sur Seine.
  4. Martínez-Rodríguez, A.J., Polo, M.C., 2000. Characterization of the Nitrogen Compounds Released during Yeast Autolysis in a Model Wine System. J. Agric. Food Chem. 48, 1081–1085. https://doi.org/10.1021/jf991047a
  5. Alcaide-Hidalgo, J.M., Moreno-Arribas, M.V., Polo, M.C., Pueyo, E., 2008. Partial characterization of peptides from red wines. Changes during malolactic fermentation and ageing with lees. Food Chemistry 107, 622–630. https://doi.org/10.1016/j.foodchem.2007.08.054

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jacqueline Rodriguez Rey1, Montserrat Poblet2, Albert Bordons1, Nicolas Rozès2, Cristina Reguant1
1.Grup de Biotecnologia Enològica, Facultat d’Enologia, Universitat Rovira i Virgili
2.Grup de Biotecnologia Microbiana dels Aliments. Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Univer-sitat Rovira i Virgili

Contact the author*

Keywords

wine lees, malolactic fermentation, Oenococcus oeni, nitrogen compounds

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes
such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species
diversity of many of the relevant ecological niches within the broader wine environment, from vineyard
soils to plants and grapes to fermentation. The data highlight that species identities and diversity
significantly impact agronomic performance of vineyards as well as wine quality, but the complexity
of these systems and of microbial growth dynamics has defeated attempts to offer actionable
tools to guide or predict specific outcomes of ecosystem-based interventions.

Metabolomics for grape and wine research: exploring the contributions of amino acids to wine flavour

A critical aspect of wine quality is the overall expression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components.
Grapes directly contribute to wine only a small number of potent aroma compounds, and the unique
sensory attributes and perceived quality of a wine result from combining 100s of metabolites of grapes, yeast and bacteria, and oak wood.

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.

OENOLOGICAL POTENTIAL OF AUTOCHTHONOUS SACCHAROMYCES CEREVISIAE STRAINS AND THEIR EFFECT ON THE PRODUCTION OF TYPICAL SAVATIANO WINES

Due to the global demand for terroir wines, the winemaking industry has focused attention on exploiting the local yeast microflora of each wine growing region to express the regional character and enhance the sensory profile of wines such as varietal typicity and aroma complexity. The objective of the present study was to isolate and compare the indigenous strains of Saccharomyces cerevisiae present in different vineyards in the Mesogeia – Attiki wine region (Greece), evaluate their impact on chemical composition and sensory profile of Savatiano wines and select the most suitable ones for winemaking process.

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].