terclim by ICS banner
IVES 9 IVES Conference Series 9 WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

Abstract

Malolactic fermentation (MLF) is a desired process in red and acidic white wines, after alcoholic fermentation (AF), carried out by the lactic acid bacterium (LAB) Oenococcus oeni. The advantages are an increase of pH, microbiological stabilization and organoleptic improvement of the final wine. However, the presence of stress factors such as ethanol, low pH, high total SO2, lack of nutrients and presence of inhibitors, could affect the successful completion of MLF [1]. Changes in amino acid composition and deficiencies in peptides after AF, showed that MLF can be delayed, signaling its importance for bacterial growth and L-malic acid degradation during MLF [2].

Wine lees accumulated after fermentation, contain approximately 25% of dried matter, that consists of 25 to 35% tartrate salts, 35 to 45% microorganisms (predominantly yeasts) and 30 to 40% organic residues [3]. During vinification, through yeast autolysis there is a release of nitrogen compounds that could be beneficial for LAB [4]. The monitorization of nitrogen compounds during MLF and aging on lees in red wine with O.oeni  has revealed the breaking down of peptides and rise in free amino acid concentration, supporting the idea of proteolytic activity [5].

The aim of the present work was to observe the effect of the addition of different wine lees, produced in the vintage 2022 in the cellar (Mas dels Frares, Tarragona, Spain) by different vinification processes, on MLF.  Protein concentration, primary amino nitrogen, free amino acids and ammonia were determined in wine lees coming from red and white wine with different inoculation strategies and fermenting temperatures. The ones presenting greater differences in nitrogen compounds composition were selected for the addition in synthetic wine with pH 3.5, ethanol 12% (v/v) and low nitrogen content. MLFs were carried out at 20 °C with two different strains of O.oeni showing differences in MLF performance. Changes in nitrogen compounds during MLF were evaluated. Under most of the conditions, the lees addition (1 g/L) produced a reduction in the MLF duration in comparison with the control condition. This effect is bacteria strain and lees dependent. Overall, it was confirmed that the addition of wine lees could be beneficial. This effect could be linked to the proteins and amino acids input.

 

  1. Sumby, K.M., Bartle, L., Grbin, P.R., Jiranek, V., 2019. Measures to improve wine malolactic fermentation. Appl Microbiol Biotechnol 103, 2033–2051. https://doi.org/10.1007/s00253-018-09608-8
  2. Guilloux-Benatier, M., Remize, F., Gal, L., Guzzo, J., Alexandre, H., 2006. Effects of yeast proteolytic activity on Oenococcus oeni and malolactic fermentation. FEMS Microbiology Letters 263, 183–188. https://doi.org/10.1111/j.1574-6968.2006.00417.x
  3. Renouil, Y. and Feret, C., 1988. Dictionnaire du vin. Ed. Sezame, Boulogne sur Seine.
  4. Martínez-Rodríguez, A.J., Polo, M.C., 2000. Characterization of the Nitrogen Compounds Released during Yeast Autolysis in a Model Wine System. J. Agric. Food Chem. 48, 1081–1085. https://doi.org/10.1021/jf991047a
  5. Alcaide-Hidalgo, J.M., Moreno-Arribas, M.V., Polo, M.C., Pueyo, E., 2008. Partial characterization of peptides from red wines. Changes during malolactic fermentation and ageing with lees. Food Chemistry 107, 622–630. https://doi.org/10.1016/j.foodchem.2007.08.054

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jacqueline Rodriguez Rey1, Montserrat Poblet2, Albert Bordons1, Nicolas Rozès2, Cristina Reguant1
1.Grup de Biotecnologia Enològica, Facultat d’Enologia, Universitat Rovira i Virgili
2.Grup de Biotecnologia Microbiana dels Aliments. Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Univer-sitat Rovira i Virgili

Contact the author*

Keywords

wine lees, malolactic fermentation, Oenococcus oeni, nitrogen compounds

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

MONOSACCHARIDE COMPOSITION AND POLYSACCHARIDE FAMILIES OF LYOPHILISED EXTRACTS OBTAINED FROM POMACES OF DIFFERENT WHITE GRAPE VARIETIES

The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.

EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

Varietal innovation is a major lever for meeting the challenges of the agro-ecological transition of vi-neyards and their adaptation to climate change. To date, selection work has already begun in the Bordeaux region through the Newvine project. The aim of this project is to create new vine varieties with resistance to mildew and powdery mildew, adapted to the climatic conditions of the Bordeaux region and enabling the production of wines that are in line with consumer tastes and the expected typicity of Bordeaux wines.