terclim by ICS banner
IVES 9 IVES Conference Series 9 WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

Abstract

Malolactic fermentation (MLF) is a desired process in red and acidic white wines, after alcoholic fermentation (AF), carried out by the lactic acid bacterium (LAB) Oenococcus oeni. The advantages are an increase of pH, microbiological stabilization and organoleptic improvement of the final wine. However, the presence of stress factors such as ethanol, low pH, high total SO2, lack of nutrients and presence of inhibitors, could affect the successful completion of MLF [1]. Changes in amino acid composition and deficiencies in peptides after AF, showed that MLF can be delayed, signaling its importance for bacterial growth and L-malic acid degradation during MLF [2].

Wine lees accumulated after fermentation, contain approximately 25% of dried matter, that consists of 25 to 35% tartrate salts, 35 to 45% microorganisms (predominantly yeasts) and 30 to 40% organic residues [3]. During vinification, through yeast autolysis there is a release of nitrogen compounds that could be beneficial for LAB [4]. The monitorization of nitrogen compounds during MLF and aging on lees in red wine with O.oeni  has revealed the breaking down of peptides and rise in free amino acid concentration, supporting the idea of proteolytic activity [5].

The aim of the present work was to observe the effect of the addition of different wine lees, produced in the vintage 2022 in the cellar (Mas dels Frares, Tarragona, Spain) by different vinification processes, on MLF.  Protein concentration, primary amino nitrogen, free amino acids and ammonia were determined in wine lees coming from red and white wine with different inoculation strategies and fermenting temperatures. The ones presenting greater differences in nitrogen compounds composition were selected for the addition in synthetic wine with pH 3.5, ethanol 12% (v/v) and low nitrogen content. MLFs were carried out at 20 °C with two different strains of O.oeni showing differences in MLF performance. Changes in nitrogen compounds during MLF were evaluated. Under most of the conditions, the lees addition (1 g/L) produced a reduction in the MLF duration in comparison with the control condition. This effect is bacteria strain and lees dependent. Overall, it was confirmed that the addition of wine lees could be beneficial. This effect could be linked to the proteins and amino acids input.

 

  1. Sumby, K.M., Bartle, L., Grbin, P.R., Jiranek, V., 2019. Measures to improve wine malolactic fermentation. Appl Microbiol Biotechnol 103, 2033–2051. https://doi.org/10.1007/s00253-018-09608-8
  2. Guilloux-Benatier, M., Remize, F., Gal, L., Guzzo, J., Alexandre, H., 2006. Effects of yeast proteolytic activity on Oenococcus oeni and malolactic fermentation. FEMS Microbiology Letters 263, 183–188. https://doi.org/10.1111/j.1574-6968.2006.00417.x
  3. Renouil, Y. and Feret, C., 1988. Dictionnaire du vin. Ed. Sezame, Boulogne sur Seine.
  4. Martínez-Rodríguez, A.J., Polo, M.C., 2000. Characterization of the Nitrogen Compounds Released during Yeast Autolysis in a Model Wine System. J. Agric. Food Chem. 48, 1081–1085. https://doi.org/10.1021/jf991047a
  5. Alcaide-Hidalgo, J.M., Moreno-Arribas, M.V., Polo, M.C., Pueyo, E., 2008. Partial characterization of peptides from red wines. Changes during malolactic fermentation and ageing with lees. Food Chemistry 107, 622–630. https://doi.org/10.1016/j.foodchem.2007.08.054

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jacqueline Rodriguez Rey1, Montserrat Poblet2, Albert Bordons1, Nicolas Rozès2, Cristina Reguant1
1.Grup de Biotecnologia Enològica, Facultat d’Enologia, Universitat Rovira i Virgili
2.Grup de Biotecnologia Microbiana dels Aliments. Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Univer-sitat Rovira i Virgili

Contact the author*

Keywords

wine lees, malolactic fermentation, Oenococcus oeni, nitrogen compounds

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Metabolomics for grape and wine research: exploring the contributions of amino acids to wine flavour

A critical aspect of wine quality is the overall expression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components.
Grapes directly contribute to wine only a small number of potent aroma compounds, and the unique
sensory attributes and perceived quality of a wine result from combining 100s of metabolites of grapes, yeast and bacteria, and oak wood.

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

CHARACTERIZATION OF THE VOLATILE COMPOUNDS PROFILE OF COMMERCIAL GRAPPAS OBTAINED FROM THE POMACE OF AMARONE WINES

Grappa is a traditional Italian alcoholic beverage, with an alcohol content generally between 40-60% vol., obtained from the distillation of grape pomace used for the production of wine. Grappa are often aged in wooden barrels. There are various types of grappa: young, aromatic, aged, extra-aged depending on whether the distillate comes from aromatic vines or is aged in wooden barrels for shorter or longer periods. There is also flavored grappa if herbs, fruit or roots are added. All this makes it an extremely heterogeneous product both from an organoleptic and compositional point of view.

NEAR INFRARED SPECTROSCOPY FOR THE ESTIMATION OF TEMPRANILLO BLANCO VOLATILE COMPOSITION ALONG GRAPE MATURATION

Grape volatile compounds are mainly responsible for wine aroma, so it is important to know the va-rietal aromatic composition throughout ripening process. Currently, there are no tools that allow mea-suring the aromatic composition of grapes, in intact berries and periodically, throughout ripening, in the vineyard or in the winery. For this reason, this work evaluated the use of near infrared spectroscopy (NIR) to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening. For this purpose, NIR spectra (1100-2100 nm) were acquired from 240 samples of in-tact berries, collected at different dates, from veraison to overripening.