terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Abstract

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fer-mentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine. The aim was to stu-dy the effect of M. pulcherrima on the aroma complexity of icewine, which is of great significance to the application of M. pulcherrima in icewine production. The results showed that M. pulcherrima was completely replaced by S. cerevisiae at the middle and later fermentative stages in mixed culture fer-mentations. Compared with the icewine fermented with pure S. cerevisiae, mixed culture fermented icewines contained lower concentrations acetic acid and ethanol, and higher concentrations glycerol and succinic acid. The inoculation of M. pulcherrima greatly impacted the levels of several important volatile compounds, and more ethyl esters (such as ethyl caprylate, ethyl hexanoate, ethyl heptanoate, eta.), 2,4-hexadienoic acid, decanal, 1-octanol, and trans-rose oxide were produced, and the pleasant fruity and flowery characteristic was intensified. Moreover, the relevance of strain-specificity within M. pulcherrima to aroma compound differences was shown.

 

1. Hranilovic A, Gambetta J M, Jeffery D W, et al. Lower-alcohol wines produced by Metschnikowia pulcherrima and Saccha-romyces cerevisiae co-fermentations: The effect of sequential inoculation timing[J]. International journal of food microbio-logy, 2020, 329: 108651.
2. Zhang W, Zhuo X, Hu L, et al. Effects of Crude β-Glucosidases from Issatchenkia terricola, Pichia kudriavzevii, Metschniko-wia pulcherrima on the Flavor Complexity and Characteristics of Wines[J]. Microorganisms, 2020, 8(6): 953.
3. Ge Q, Guo C, Zhang J, et al. Effects of simultaneous co-fermentation of five indigenous non-Saccharomyces strains with S. cerevisiae on Vidal icewine aroma quality[J]. Foods, 2021, 10(7): 1452.
4. Zhang B Q, Shen J Y, Duan C Q, et al. Use of indigenous Hanseniaspora vineae and Metschnikowia pulcherrima co-fermen-tation with Saccharomyces cerevisiae to improve the aroma diversity of Vidal Blanc icewine[J]. Frontiers in microbiology, 2018, 9: 2303.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jing Li¹, Mengnan Hong1, 2

1. School of Food and Health, Jinzhou Medical University, Jinzhou, 121001 Liaoning, China
2. Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu, China

Contact the author*

Keywords

Metschnikowia pulcherrima, mixed culture fermentation, Vidal blanc icewine, volatile aroma compounds

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.

NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

The fresh mushroom off-flavour (FMOff) has been appearing in wines since the 2000s. Some C8 compounds such as 1-octen-3-one, 1-octen-3-ol, 1-hydroxyoctan-3-one, 3-octanol and others are involved in this specific off-flavour [1-3]. At the same time, glycosidic precursors of some FMOff compounds have been identified in musts contaminated by Crustomyces subabruptus [4], highlighting the role of aroma precursors in this specific taint. However, the fate of these volatile molecules and glycosidic fractions during fermentation is not well known.

WHITE WINES OXIDATIVE STABILITY: A 2-VINTAGE STUDY OF CHARDONNAY CHAMPAGNE BASE WINES AGED ON LEES IN BARRELS

Ultra-premium champagne wines are characterized by a long stay on laths. The goal of the winemaker is to use all possible oenological techniques to keep the aromatic freshness of the future products. To that purpose, some champagne base wines can be aged on lees in oak barrels. However, if it is now acknowledged that such ageing practices contribute to the oxidative stability of dry white wines, no study has been done on Chardonnay champagne base wines designed for a long ageing on laths [1].

INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

In the last decades the use of bioestimulants in viticulture have been promoted as alternative to conven- tional pesticides. Moreover, as bioestimulants promote the biosynthesis of secondary metabolites in grape berries, several studies had investigated their influence on the accumulation of phenolic com- pounds (Monteiro et al., 2022). However, few studies, so far, are focused on the accumulation of the vo- latile compounds and their impact on the produced wines (Giménez-Bañón et al., 2022; Gomez- Plaza et al., 2012; Ruiz Garcia et al., 2014).
This study was conducted in a single vineyard of white autochthonous grapevine variety Savvatia- no (Vitis vinifera L.) in Muses Valley (Askri, Viotia, Greece). Chitosan (CHT), Abscisic Acid (ABA) and Benzothiadiazole (BTH) were applied.

REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

Nitrogen (N) fertilizer is important for grape growth and the quality of wine. It is essential to address the mismatch between N application and wine composition. Cabernet Gernischt (Vitis vinifera L.), as one of the main wine-grape cultivars in China, was introduced to Yantai wine region in 1892. This grape cultivar is traditionally used for quality dry red wine with fruit, spices aroma, ruby red and full-bodied wines. In order to regulate vine growth and improve grape and wine quality, Cabernet Gernischt grapevines were subjected to decreased levels of N treatments, compared to normal N supply treatment, during grape growing seasons of 2019 and 2020.