terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Abstract

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fer-mentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine. The aim was to stu-dy the effect of M. pulcherrima on the aroma complexity of icewine, which is of great significance to the application of M. pulcherrima in icewine production. The results showed that M. pulcherrima was completely replaced by S. cerevisiae at the middle and later fermentative stages in mixed culture fer-mentations. Compared with the icewine fermented with pure S. cerevisiae, mixed culture fermented icewines contained lower concentrations acetic acid and ethanol, and higher concentrations glycerol and succinic acid. The inoculation of M. pulcherrima greatly impacted the levels of several important volatile compounds, and more ethyl esters (such as ethyl caprylate, ethyl hexanoate, ethyl heptanoate, eta.), 2,4-hexadienoic acid, decanal, 1-octanol, and trans-rose oxide were produced, and the pleasant fruity and flowery characteristic was intensified. Moreover, the relevance of strain-specificity within M. pulcherrima to aroma compound differences was shown.

 

1. Hranilovic A, Gambetta J M, Jeffery D W, et al. Lower-alcohol wines produced by Metschnikowia pulcherrima and Saccha-romyces cerevisiae co-fermentations: The effect of sequential inoculation timing[J]. International journal of food microbio-logy, 2020, 329: 108651.
2. Zhang W, Zhuo X, Hu L, et al. Effects of Crude β-Glucosidases from Issatchenkia terricola, Pichia kudriavzevii, Metschniko-wia pulcherrima on the Flavor Complexity and Characteristics of Wines[J]. Microorganisms, 2020, 8(6): 953.
3. Ge Q, Guo C, Zhang J, et al. Effects of simultaneous co-fermentation of five indigenous non-Saccharomyces strains with S. cerevisiae on Vidal icewine aroma quality[J]. Foods, 2021, 10(7): 1452.
4. Zhang B Q, Shen J Y, Duan C Q, et al. Use of indigenous Hanseniaspora vineae and Metschnikowia pulcherrima co-fermen-tation with Saccharomyces cerevisiae to improve the aroma diversity of Vidal Blanc icewine[J]. Frontiers in microbiology, 2018, 9: 2303.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jing Li¹, Mengnan Hong1, 2

1. School of Food and Health, Jinzhou Medical University, Jinzhou, 121001 Liaoning, China
2. Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu, China

Contact the author*

Keywords

Metschnikowia pulcherrima, mixed culture fermentation, Vidal blanc icewine, volatile aroma compounds

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

Malolactic fermentation (MLF) is a desired process in red and acidic white wines, after alcoholic fermentation (AF), carried out by the lactic acid bacterium (LAB) Oenococcus oeni. The advantages are an increase of pH, microbiological stabilization and organoleptic improvement of the final wine. However, the presence of stress factors such as ethanol, low pH, high total SO2, lack of nutrients and presence of inhibitors, could affect the successful completion of MLF [1]. Changes in amino acid composition and deficiencies in peptides after AF, showed that MLF can be delayed, signaling its importance for bacterial growth and L-malic acid degradation during MLF [2].

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

Production of volatile compounds by yeast is known to be modulated by must nitrogen. Nevertheless, various parameter of must quality have an impact on yeast fermentation. In this study we propose to evaluate the impact of nitrogen / lipids balance on a Sauvignon Blanc grape juice (Val de Loire).
Must was prepared from the same grapes at pilot scale. Three modalities were carried out: direct pressing, direct pressing with a pre-fermentation cold stabulation and pellicular maceration before pressing.