terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Abstract

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fer-mentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine. The aim was to stu-dy the effect of M. pulcherrima on the aroma complexity of icewine, which is of great significance to the application of M. pulcherrima in icewine production. The results showed that M. pulcherrima was completely replaced by S. cerevisiae at the middle and later fermentative stages in mixed culture fer-mentations. Compared with the icewine fermented with pure S. cerevisiae, mixed culture fermented icewines contained lower concentrations acetic acid and ethanol, and higher concentrations glycerol and succinic acid. The inoculation of M. pulcherrima greatly impacted the levels of several important volatile compounds, and more ethyl esters (such as ethyl caprylate, ethyl hexanoate, ethyl heptanoate, eta.), 2,4-hexadienoic acid, decanal, 1-octanol, and trans-rose oxide were produced, and the pleasant fruity and flowery characteristic was intensified. Moreover, the relevance of strain-specificity within M. pulcherrima to aroma compound differences was shown.

 

1. Hranilovic A, Gambetta J M, Jeffery D W, et al. Lower-alcohol wines produced by Metschnikowia pulcherrima and Saccha-romyces cerevisiae co-fermentations: The effect of sequential inoculation timing[J]. International journal of food microbio-logy, 2020, 329: 108651.
2. Zhang W, Zhuo X, Hu L, et al. Effects of Crude β-Glucosidases from Issatchenkia terricola, Pichia kudriavzevii, Metschniko-wia pulcherrima on the Flavor Complexity and Characteristics of Wines[J]. Microorganisms, 2020, 8(6): 953.
3. Ge Q, Guo C, Zhang J, et al. Effects of simultaneous co-fermentation of five indigenous non-Saccharomyces strains with S. cerevisiae on Vidal icewine aroma quality[J]. Foods, 2021, 10(7): 1452.
4. Zhang B Q, Shen J Y, Duan C Q, et al. Use of indigenous Hanseniaspora vineae and Metschnikowia pulcherrima co-fermen-tation with Saccharomyces cerevisiae to improve the aroma diversity of Vidal Blanc icewine[J]. Frontiers in microbiology, 2018, 9: 2303.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jing Li¹, Mengnan Hong1, 2

1. School of Food and Health, Jinzhou Medical University, Jinzhou, 121001 Liaoning, China
2. Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu, China

Contact the author*

Keywords

Metschnikowia pulcherrima, mixed culture fermentation, Vidal blanc icewine, volatile aroma compounds

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

USING CHECK-ALL-THAT-APPLY (CATA) TO CATEGORIZE WINES: A DECISION-MAKING TOOL FOR WINE SELECTION

Bordeaux is the largest appellation vineyard in France. This contrasting vineyard with varied terroirs offers all styles of wine, resulting from the blending of several grape varieties. If these different profiles make the renown of Bordeaux wines, it can appear as a constraint when the aim is to study Bordeaux wines in their diversity. The selection of a representative sample can be performed by a sensory analysis carried out by trained panelists or by wine professionals, which can take several forms: consensus among experts, conventional descriptive analysis, typicality or quality evaluation. However, because of time, economic, and logistical constraints, these methods have limited applications. As an alternative to classical descriptive analysis, more intuitive methods that do not require training have been proposed recently to describe wines using an expert panel such as Napping, Free Choice or Flash Profiling, CATA or RATA.

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103.

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.