terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Abstract

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fer-mentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine. The aim was to stu-dy the effect of M. pulcherrima on the aroma complexity of icewine, which is of great significance to the application of M. pulcherrima in icewine production. The results showed that M. pulcherrima was completely replaced by S. cerevisiae at the middle and later fermentative stages in mixed culture fer-mentations. Compared with the icewine fermented with pure S. cerevisiae, mixed culture fermented icewines contained lower concentrations acetic acid and ethanol, and higher concentrations glycerol and succinic acid. The inoculation of M. pulcherrima greatly impacted the levels of several important volatile compounds, and more ethyl esters (such as ethyl caprylate, ethyl hexanoate, ethyl heptanoate, eta.), 2,4-hexadienoic acid, decanal, 1-octanol, and trans-rose oxide were produced, and the pleasant fruity and flowery characteristic was intensified. Moreover, the relevance of strain-specificity within M. pulcherrima to aroma compound differences was shown.

 

1. Hranilovic A, Gambetta J M, Jeffery D W, et al. Lower-alcohol wines produced by Metschnikowia pulcherrima and Saccha-romyces cerevisiae co-fermentations: The effect of sequential inoculation timing[J]. International journal of food microbio-logy, 2020, 329: 108651.
2. Zhang W, Zhuo X, Hu L, et al. Effects of Crude β-Glucosidases from Issatchenkia terricola, Pichia kudriavzevii, Metschniko-wia pulcherrima on the Flavor Complexity and Characteristics of Wines[J]. Microorganisms, 2020, 8(6): 953.
3. Ge Q, Guo C, Zhang J, et al. Effects of simultaneous co-fermentation of five indigenous non-Saccharomyces strains with S. cerevisiae on Vidal icewine aroma quality[J]. Foods, 2021, 10(7): 1452.
4. Zhang B Q, Shen J Y, Duan C Q, et al. Use of indigenous Hanseniaspora vineae and Metschnikowia pulcherrima co-fermen-tation with Saccharomyces cerevisiae to improve the aroma diversity of Vidal Blanc icewine[J]. Frontiers in microbiology, 2018, 9: 2303.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jing Li¹, Mengnan Hong1, 2

1. School of Food and Health, Jinzhou Medical University, Jinzhou, 121001 Liaoning, China
2. Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu, China

Contact the author*

Keywords

Metschnikowia pulcherrima, mixed culture fermentation, Vidal blanc icewine, volatile aroma compounds

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

THE FLAVANOL PROFILE OF SKIN, SEED, WINES, AND POMACE ARE CHARACTERISTIC OF EACH TYPOLOGY AND CONTRIBUTES TO UNDERSTAND THE FLAVAN- 3-OLS EXTRACTION DURING RED WINEMAKING

Wine flavanols are extracted from grape skin and seeds along red winemaking. Potentially, eight flavan-3-ol subunits may be present as monomers or as tannins constituents, being these catechin, epicathechin, gallocatechin, epigallocatechin end the gallates of the mentioned units. In this work the flavanol profiles of grape skins and seeds before (grapes) and after (pomace) red winemaking were studied together with the one in the corresponding wines. The trials were made over two vintages in Vitis vinifera cv. Tannat, Syrah and Marselan from Uruguay.

SIP and save the planet: a sensory and consumer exploration of australian wines made from potentially drought-tolerant white wine grapes

In order to attenuate the effects of climate change on the ability to cultivate quality wine grape vines in Australia, it is essential to adapt to the projected less favourable Australian climate scenarios. One response may be to convert a portion of the current grapevine plantings to those varieties that demand less water and can tolerate increased heat. This investigation aimed to (i) generate sensory profiles and (ii) obtain knowledge about Australian wine consumers’ preferences and opinions of Australian wines made from potentially drought tolerant, white wine grape varieties not traditionally cultivated in Australia. A Rate-All-That-Apply (RATA) sensory panel (n = 49) generated sensory profiles of 44 commercial white wines made from 7 different white grape varieties (Arinto, Fiano, Garganega, Greco, Verdejo, Verdelho and Vermentino), plus two benchmark examples each of an Australian Riesling, Pinot Gris and Chardonnay wine.

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes
such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species
diversity of many of the relevant ecological niches within the broader wine environment, from vineyard
soils to plants and grapes to fermentation. The data highlight that species identities and diversity
significantly impact agronomic performance of vineyards as well as wine quality, but the complexity
of these systems and of microbial growth dynamics has defeated attempts to offer actionable
tools to guide or predict specific outcomes of ecosystem-based interventions.