terclim by ICS banner
IVES 9 IVES Conference Series 9 CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

Abstract

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4 However, the role of other aroma compounds, including esters, higher alcohols, and other VSCs, and their contribution to the sensory perception of positive reduction in New Zealand (NZ) Chardonnay wines has not been fully investigated. We selected 12 commercial NZ Chardonnay wines to represent a range of styles from low to high intensities of mineral and flint. Wine aroma profiles were analysed using headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Quantitative descriptive analysis (QDA) was performed on the same wines using a trained panel. Wines varied greatly in both their chemical and sensorial characteristics. Multivariate analysis showed that there were several key VSCs found to be explanatory variables driving the perception of attributes related to positive reduction in the NZ Chardonnay wines. These results will be presented in the context of winemaking techniques that can be applied by the industry to achieve Chardonnay styles with positive reduction, if desired by the winemaker.

 

1. Tominaga, T.; Guimbertau, G.; Dubourdieu, D. Contribution of Benzenemethanethiol to Smoky Aroma of Certain Vitis Vinifera 
L. Wines. J. Agric. Food Chem. 2003, 51 (5), 1373–1376. https://doi.org/10.1021/jf020756c.
2. Malfeito-Ferreira, M. Wine Minerality and Funkiness: Blending the Two Tales of the Same Story. Fermentation 2022, 8 (12). https://doi.org/10.3390/fermentation8120745.
3. Rodrigues, H.; Sáenz-Navajas, M.-P.; Franco-Luesma, E.; Valentin, D.; Fernández-Zurbano, P.; Ferreira, V.; De La Fuente Blanco, A.; Ballester, J. Sensory and Chemical Drivers of Wine Minerality Aroma: An Application to Chablis Wines. Food Chem. 2017, 230, 553–562. https://doi.org/10.1016/j.foodchem.2017.03.036.
4. Capone, D. L.; Barker, A.; Williamson, P. O.; Francis, I. L. The Role of Potent Thiols in Chardonnay Wine Aroma. Aust. J. Grape Wine Res. 2018, 24 (1), 38–50. https://doi.org/10.1111/ajgw.12294.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Rebecca C.Deed1, Daisy Zhang¹, Jennifer R. Muhl², Mathilde Derycke²

1. School of Biological Sciences, The University of Auckland
2. School of Chemical Sciences, The University of Auckland

Contact the author*

Keywords

Chardonnay, Flint, Mineral, Volatile Sulfur Compounds

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

WINE AS AN EMOTIONAL AND AESTHETIC OBJECT: IMPACT OF EXPERTISE

Wine tasting has been shown to provide emotions to tasters (Coste et al. 2018). How will expertise impact this emotional response? Burnham and Skilleås (2012) reported that the cultural, experiential, and aesthetic competencies characterize an expert in wine compared to a novice. Although there is no consensual definition of an aesthetic experience, Burnham and Skilleås (2012) reported that aesthetic appreciation is “disinterested, normative for others and communicable” in comparison to sensory pleasure.

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

THE POTENTIAL USE OF SOLUBLE POLYSACCHARIDES TO PREVENT THE OXIDATION OF ROSÉ WINES

Lately, rosé wine is rapidly increasing its popularity worldwide. Short-time macerations with the red skin of the grapes cause the partial extraction of anthocyanins, which are responsible for the pinki-sh-salmon hue of rosé wines. However, the low quantity of tannins (antioxidants) and richness in phenolic acids, which can be easily oxidized into yellowish pigments, tend to predispose rosé wines to an undesirable browning. Although the use of SO₂ for the prevention of oxidation is highly extended, this practice is expected to be reduced. Therefore, the search for alternative oenological adjuvants that prevent the oxidation and browning of rosé wines is highly desired.

ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

Many factors influence aging of bottled wine, oxygen transfer through the closure is included. The maximum uptake of wine before oxidation begins varies from 60 mg.L-¹ to 180 mg.L-1 for white and red wines respectively [1].
The process of bottling may lead to considerable amounts of oxygen. The actual contribution of the transfer through the closure system becomes relevant at the bottle storage, but the amounts are small compared to prepacking operations [2] and to the total oxygen attained during filling.

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease.