terclim by ICS banner
IVES 9 IVES Conference Series 9 CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

Abstract

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4 However, the role of other aroma compounds, including esters, higher alcohols, and other VSCs, and their contribution to the sensory perception of positive reduction in New Zealand (NZ) Chardonnay wines has not been fully investigated. We selected 12 commercial NZ Chardonnay wines to represent a range of styles from low to high intensities of mineral and flint. Wine aroma profiles were analysed using headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Quantitative descriptive analysis (QDA) was performed on the same wines using a trained panel. Wines varied greatly in both their chemical and sensorial characteristics. Multivariate analysis showed that there were several key VSCs found to be explanatory variables driving the perception of attributes related to positive reduction in the NZ Chardonnay wines. These results will be presented in the context of winemaking techniques that can be applied by the industry to achieve Chardonnay styles with positive reduction, if desired by the winemaker.

 

1. Tominaga, T.; Guimbertau, G.; Dubourdieu, D. Contribution of Benzenemethanethiol to Smoky Aroma of Certain Vitis Vinifera 
L. Wines. J. Agric. Food Chem. 2003, 51 (5), 1373–1376. https://doi.org/10.1021/jf020756c.
2. Malfeito-Ferreira, M. Wine Minerality and Funkiness: Blending the Two Tales of the Same Story. Fermentation 2022, 8 (12). https://doi.org/10.3390/fermentation8120745.
3. Rodrigues, H.; Sáenz-Navajas, M.-P.; Franco-Luesma, E.; Valentin, D.; Fernández-Zurbano, P.; Ferreira, V.; De La Fuente Blanco, A.; Ballester, J. Sensory and Chemical Drivers of Wine Minerality Aroma: An Application to Chablis Wines. Food Chem. 2017, 230, 553–562. https://doi.org/10.1016/j.foodchem.2017.03.036.
4. Capone, D. L.; Barker, A.; Williamson, P. O.; Francis, I. L. The Role of Potent Thiols in Chardonnay Wine Aroma. Aust. J. Grape Wine Res. 2018, 24 (1), 38–50. https://doi.org/10.1111/ajgw.12294.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Rebecca C.Deed1, Daisy Zhang¹, Jennifer R. Muhl², Mathilde Derycke²

1. School of Biological Sciences, The University of Auckland
2. School of Chemical Sciences, The University of Auckland

Contact the author*

Keywords

Chardonnay, Flint, Mineral, Volatile Sulfur Compounds

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FACTORS AFFECTING QUERCETIN SOLUBILITY IN SANGIOVESE RED WINE: FIRST RESULTS

Quercetin (Q) is present in grape in form of glycosides and as aglycone. These compounds are extracted from grape skins during winemaking. In wines, following the hydrolysis reactions, the amount of quercetin aglycon can exceed its solubility value. Unfortunately, a threshold solubility concentration for quercetin in wine is not easy to determine because it depends on wine matrix (Gambuti et al., 2020).

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae.

NOVEL BENZENETHIOLS WITH PHENOLS CAUSE ASHY, SMOKE FLAVOR PERCEPTION IN RED WINES

Smoke impacts on wines are becoming a worldwide problem; the size and severity of wildfires increasing due to influences from changing climates.¹ For over a century, wines have been known to have a unique issue of absorbing chemical compounds derived from wildfire smoke wherein the flavor of the subsequent wine becomes ashy, rubbery, campfire-like, and smoky.² The economic impacts of a smoke-impacted wine can last for years depending on the grape varietal, costing Oregon and Washington states in the United States over a billion dollars from the 2020 wildfires, as an example.³ While years of research have indicated elevated concentrations of smoke-related compounds, such as guaiacol and syringol, in wines after smoke events, unfortunately, replicating the sensory experience using smoke-associated phenols has not had much success.⁴

THE EFFECT OF COPPER ON THE PRODUCTION OF VARIETAL THIOLS DURING THE ALCOHOLIC FERMENTATION OF COLOMBARD AND GROS MANSENG GRAPE JUICES

Nowadays, the rapid growth of vineyards with organic practices and the use of copper as the only fun-gicide against downy mildew raises again the question of the effect of copper on varietal thiols in wine, especially 3-sulfanylhexan-1-ol (3SH) and its acetate (3SHA). A few decades ago, several works indicated that the use of copper in the vineyard had a negative effect on the content of varietal thiols in Sauvignon blanc wines [1, 2]. However, these studies only considered the concentration of the reduced form (RSH) of varietal thiols, without quantifying the oxidised ones. For this purpose, we proposed to monitor both reduced and oxidised forms of varietal thiols in wine under copper stress during alcoholic fermentation to have a more complete picture of the biological and chemical mechanisms.

INCREASING PINOT NOIR COLOUR DENSITY THROUGH SEQUENTIAL INOCULATION OF FLOCCULENT COMMERCIAL WINE YEAST SPECIES

Vitis vinifera L. cv. Pinot noir can be challenging to manage in the winery as its thin skins require careful handling to ensure sufficient extraction of wine colour to promote colour stability during ageing.1 Literature has shown that fermentation with flocculent yeasts can increase red wine colour density.2 As consumers prefer greater colour density in red wines,3 the development of tools to increase colour density would be useful for the wine industry. This research explored the impact of interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine colour.