OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 D-wines: use of LC-MS metabolomic space to discriminate italian mono-varietal red wines

D-wines: use of LC-MS metabolomic space to discriminate italian mono-varietal red wines

Abstract

Studying wine metabolome through multiple targeted methods is complicated and limitative; since grapes, yeasts, bacteria, oxygen, enological techniques and wine aging collaborate to deliver one of the richest metabolomic fingerprint. Therefore, untargeted metabolomics, that developed and evolved as a consequence of the need to obtain a comprehensive characterization of the organic molecules in any biological sample, is the current methodology offering the best coverage of wine metabolome. Taking into account the large genetic diversity, the diversity of the climate and of the agronomical practices, and the wide winemaking culture characterizing the Italian wines, the metabolomic untargeted approach appears as an appropriate analytical tool to study such metabolic space. 

According to the national project D-Wines, 110 single-cultivar red wines from the 2016 vintage were collected directly from wineries across different regions of Italy: Sangiovese from Tuscany and Romagna, Nebbiolo from Piemont, Aglianico from Campania, Nerello Mascalese from Sicily, Primitivo from Apulia, Raboso and Corvina from Veneto, Cannonau from Sardinia, Teroldego from Trentino, Sagrantino from Umbria, and Montepulciano from Abruzzo. The wines were analyzed according to a well-defined RP-UPLC-HRMS-QTOF-MS protocol. 

The results of the data analysis, after their validation: a) confirmed untargeted LC-MS-based metabolomics as a powerful authenticity tool; b) provided indications about the similarity between the cultivars, clustering the wines in three major groups (Primitivo – Nebbiolo, Corvina, Raboso, Sangiovese – Teroldego, Sagrantino, Cannonau, Nerello, Aglianico, Montepulciano); c) furnished a rich list of putative markers characterizing each cultivar, where Primitivo, Teroldego and Nebbiolo had the maximum number of unique putative markers; d) revealed that the putative markers were not only phenolic metabolites; and e) pointed out rt/mz chromatographic sections helpful to distinguish each cultivar from the others. 

This study, together with other D-Wines analytical results, is directed to understand the diversity of Italian red wines and to characterize them in term of metabolic space coverage/variability and taste and in consequence comprehend better their quality. 

Acknowledgements

MIUR project N. 20157RN44Y. A. Curioni, A. Gambuti, V. Gerbi, S. Giacosa, G.P. Parpinello, D. Perenzoni, P. Piombino, A. Rinaldi, S. Río Segade, B. Simonato, G. Tornielli, S. Vincenzi

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Panagiotis Arapitsas, Maurizio Ugliano, Matteo Marangon, Luigi Moio, Luca Rolle, Andrea Versari, Fulvio Mattivi

Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (Italy)
Department of Biotechnology, University of Verona (Italy)
Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova (Italy)
Department of Agricultural Sciences, University of Naples Federico II, Avellino (Italy); Dipartimento di Scienze Agrarie, Forestali e Alimentari, Universitàdi Torino (Italy)
Department of Agricultural and Food Sciences, University of Bologna (Italy); Centre Agriculture Food Environment, University of Trento (Italy)

Contact the author

Keywords

mass spectrometry, wine authenticity, bioinformatics, metabolomics 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

The use of Hanseniaspora vineae on the production of base sparkling wine

Non-Saccharomyces yeasts have been associated, for many years, with challenging alcoholic fermentation processes. However, during the last decade the use of non-Saccharomyces yeasts in wine production has become increasingly widespread due to the advantages they can offer in mixed inoculations with Saccharomyces cerevisiae (Sc). In this respect, Hanseniaspora vineae (Hv), in synergy with Saccharomyces spp, represents an interesting opportunity to impart a positive contribution to the aroma complexity of wines. In fact, it is a well-known producer of pleasant esters, such as 2-phenylethyl acetate. This study compares the performances of Hv (strain Hv-205) in sequential inoculation modality to Sc in three Chardonnay musts for base sparkling wine production. No significant differences were observed in basic chemical parameters between wines except for titratable acidity, with a significantly decrease (up to 1.5 g/L) in Hv processes due to malic acid degradation. The analysis of the aroma compounds revealed remarkable differences in concentration of volatile metabolites, among others up to 37-fold increase of 2-phenylethyl acetate. In contrast, lower concentration of its alcohol were detected, suggesting higher acetylation activity by Hv.

137Cs analysis by gamma spectrometry and its potential for dating Portuguese old wines

Analytical methods for dating wines often rely on assessing anthropogenic and cosmogenic radionuclides, including 14C and 137Cs [1,2].

Metschnikowia pulcherrima as biocontrol agent in white winemaking

Biocontrol using non-Saccharomyces yeasts is an alternative strategy to chemical additives to prevent the growth of spoilage microorganisms.

Sustainablity of vineyards in the Priorat region (NE Spain)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Multi-trait selection in ancient grapevine varieties

The selection of ancient grapevine varieties aims to achieve genetic gains in several important traits that can make the variety more interesting for the objectives of the producers. Traditionally, yield and quality traits of the must have been considered for selection, but many others can be taken into account. Linear mixed models are fitted to the data to predict the empirical best linear unbiased predictors (EBLUPs) of genotypic effects for each evaluated trait, which will be the basis for selection.