OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 D-wines: use of LC-MS metabolomic space to discriminate italian mono-varietal red wines

D-wines: use of LC-MS metabolomic space to discriminate italian mono-varietal red wines

Abstract

Studying wine metabolome through multiple targeted methods is complicated and limitative; since grapes, yeasts, bacteria, oxygen, enological techniques and wine aging collaborate to deliver one of the richest metabolomic fingerprint. Therefore, untargeted metabolomics, that developed and evolved as a consequence of the need to obtain a comprehensive characterization of the organic molecules in any biological sample, is the current methodology offering the best coverage of wine metabolome. Taking into account the large genetic diversity, the diversity of the climate and of the agronomical practices, and the wide winemaking culture characterizing the Italian wines, the metabolomic untargeted approach appears as an appropriate analytical tool to study such metabolic space. 

According to the national project D-Wines, 110 single-cultivar red wines from the 2016 vintage were collected directly from wineries across different regions of Italy: Sangiovese from Tuscany and Romagna, Nebbiolo from Piemont, Aglianico from Campania, Nerello Mascalese from Sicily, Primitivo from Apulia, Raboso and Corvina from Veneto, Cannonau from Sardinia, Teroldego from Trentino, Sagrantino from Umbria, and Montepulciano from Abruzzo. The wines were analyzed according to a well-defined RP-UPLC-HRMS-QTOF-MS protocol. 

The results of the data analysis, after their validation: a) confirmed untargeted LC-MS-based metabolomics as a powerful authenticity tool; b) provided indications about the similarity between the cultivars, clustering the wines in three major groups (Primitivo – Nebbiolo, Corvina, Raboso, Sangiovese – Teroldego, Sagrantino, Cannonau, Nerello, Aglianico, Montepulciano); c) furnished a rich list of putative markers characterizing each cultivar, where Primitivo, Teroldego and Nebbiolo had the maximum number of unique putative markers; d) revealed that the putative markers were not only phenolic metabolites; and e) pointed out rt/mz chromatographic sections helpful to distinguish each cultivar from the others. 

This study, together with other D-Wines analytical results, is directed to understand the diversity of Italian red wines and to characterize them in term of metabolic space coverage/variability and taste and in consequence comprehend better their quality. 

Acknowledgements

MIUR project N. 20157RN44Y. A. Curioni, A. Gambuti, V. Gerbi, S. Giacosa, G.P. Parpinello, D. Perenzoni, P. Piombino, A. Rinaldi, S. Río Segade, B. Simonato, G. Tornielli, S. Vincenzi

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Panagiotis Arapitsas, Maurizio Ugliano, Matteo Marangon, Luigi Moio, Luca Rolle, Andrea Versari, Fulvio Mattivi

Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (Italy)
Department of Biotechnology, University of Verona (Italy)
Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova (Italy)
Department of Agricultural Sciences, University of Naples Federico II, Avellino (Italy); Dipartimento di Scienze Agrarie, Forestali e Alimentari, Universitàdi Torino (Italy)
Department of Agricultural and Food Sciences, University of Bologna (Italy); Centre Agriculture Food Environment, University of Trento (Italy)

Contact the author

Keywords

mass spectrometry, wine authenticity, bioinformatics, metabolomics 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Biophysical and agronomical drivers of the distribution of Plasmopara viticola oospores in vineyard soils

Grapevine downy mildew (GDM), caused by the obligate biotroph oomycete Plasmopara viticola, is one of the most destructive diseases in viticulture.

Adaptation to soil and climate through the choice of plant material

Choosing the rootstock, the scion variety and the training system best suited to the local soil and climate are the key elements for an economically sustainable production of wine. The choice of the rootstock/scion variety best adapted to the characteristics of the soil is essential but, by changing climatic conditions, ongoing climate change disrupts the fine-tuned local equilibrium. Higher temperatures induce shifts in developmental stages, with on the one hand increasing fears of spring frost damages and, on the other hand, ripening during the warmest periods in summer. Expected higher water demand and longer and more frequent drought events are also major concerns. The genetic control of the phenotypes, by genomic information but also by the epigenetic control of gene expression, offers a lot of opportunities for adapting the plant material to the future. For complex traits, genomic selection is also a promising method for predicting phenotypes. However, ecophysiological modelling is necessary to better anticipate the phenotypes in unexplored climatic conditions Genetic approaches applied on parameters of ecophysiological models rather than raw observed data are more than ever the basis for finding, or building, the ideal varieties of the future.

High density balsamic vinegar: application of stable isotope ratio analysis to determine watering down.

Aceto balsamico di Modena IGP (ABM) is an Italian worldwide appreciated PGI (Protected Geographical Indication) vinegar,  obtained from cooked and/or concentrated grape must (at least 20% of the volume), with the addition of at least 10% of wine vinegar and a maximum 2% of caramel for color stability (EU Reg. 583/ 2009).

Fungal communites diversity and functional roles of different types of Botrytis cinerea infected grape berries on different growing sites

Botrytis cinerea, an Ascomycota pathogen with a broad host range, infects over 1200 plant species. Grapes infected by this pathogen, which subsequently develop a noble rot, remain in the vineyard for an extended period, thus being exposed to a diverse array of physical, chemical and biological factors, which give rise to a complex microbial community.

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.