OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 D-wines: use of LC-MS metabolomic space to discriminate italian mono-varietal red wines

D-wines: use of LC-MS metabolomic space to discriminate italian mono-varietal red wines

Abstract

Studying wine metabolome through multiple targeted methods is complicated and limitative; since grapes, yeasts, bacteria, oxygen, enological techniques and wine aging collaborate to deliver one of the richest metabolomic fingerprint. Therefore, untargeted metabolomics, that developed and evolved as a consequence of the need to obtain a comprehensive characterization of the organic molecules in any biological sample, is the current methodology offering the best coverage of wine metabolome. Taking into account the large genetic diversity, the diversity of the climate and of the agronomical practices, and the wide winemaking culture characterizing the Italian wines, the metabolomic untargeted approach appears as an appropriate analytical tool to study such metabolic space. 

According to the national project D-Wines, 110 single-cultivar red wines from the 2016 vintage were collected directly from wineries across different regions of Italy: Sangiovese from Tuscany and Romagna, Nebbiolo from Piemont, Aglianico from Campania, Nerello Mascalese from Sicily, Primitivo from Apulia, Raboso and Corvina from Veneto, Cannonau from Sardinia, Teroldego from Trentino, Sagrantino from Umbria, and Montepulciano from Abruzzo. The wines were analyzed according to a well-defined RP-UPLC-HRMS-QTOF-MS protocol. 

The results of the data analysis, after their validation: a) confirmed untargeted LC-MS-based metabolomics as a powerful authenticity tool; b) provided indications about the similarity between the cultivars, clustering the wines in three major groups (Primitivo – Nebbiolo, Corvina, Raboso, Sangiovese – Teroldego, Sagrantino, Cannonau, Nerello, Aglianico, Montepulciano); c) furnished a rich list of putative markers characterizing each cultivar, where Primitivo, Teroldego and Nebbiolo had the maximum number of unique putative markers; d) revealed that the putative markers were not only phenolic metabolites; and e) pointed out rt/mz chromatographic sections helpful to distinguish each cultivar from the others. 

This study, together with other D-Wines analytical results, is directed to understand the diversity of Italian red wines and to characterize them in term of metabolic space coverage/variability and taste and in consequence comprehend better their quality. 

Acknowledgements

MIUR project N. 20157RN44Y. A. Curioni, A. Gambuti, V. Gerbi, S. Giacosa, G.P. Parpinello, D. Perenzoni, P. Piombino, A. Rinaldi, S. Río Segade, B. Simonato, G. Tornielli, S. Vincenzi

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Panagiotis Arapitsas, Maurizio Ugliano, Matteo Marangon, Luigi Moio, Luca Rolle, Andrea Versari, Fulvio Mattivi

Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (Italy)
Department of Biotechnology, University of Verona (Italy)
Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova (Italy)
Department of Agricultural Sciences, University of Naples Federico II, Avellino (Italy); Dipartimento di Scienze Agrarie, Forestali e Alimentari, Universitàdi Torino (Italy)
Department of Agricultural and Food Sciences, University of Bologna (Italy); Centre Agriculture Food Environment, University of Trento (Italy)

Contact the author

Keywords

mass spectrometry, wine authenticity, bioinformatics, metabolomics 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

High pressure homogenization of wine lees. A tool to streamline the management of wine ageing

Aging on lees (AOL) has been used for wine aging for a long time, thanks to its ability to modify wine composition, improving sensory characteristics and stability. However, the prolonged contact with fermentation lees may increase the risk of developing sensory defects, due to the growth of unwanted microorganisms. Furthermore, AOL requires a large amount of work to manage bâtonnage and for topping up the barrels, significantly increasing production costs.

Characterization of vine vigor by ground based NDVI measurements

Many farming operations aim at controlling the leaf area of the vine according to its load. There are several techniques, direct and indirect, of estimate of this leaf area in a specific way, but impossible to implement at great scales. These last years, research in airborne and satellite remote sensing made it possible to show that a multispectral index of vegetation, computed from measurements of reflectances (red and near infrared), the « Normalised Difference Vegetation Index » (NDVI), is well correlated to the « Leaf Area Index » (leaf area per unit of ground) of the vine. Nevertheless these methods of acquisition and processing data are rather constraining and complex.

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

Plant fibers in comparison with other fining agents for the re-duction of pesticide residues and the effect on the volitile profile of Austrian white and red wines.

Pesticide residues in Austrian wines have so far been poorly documented. In 250 wines, 33 grape musts and 45 musts in fermentation, no limit values were exceeded, but in some cases high lev-els (>0.100 mg/l) of single residues were found, meaning that a reduction of these levels before bottling could make sense. In the course of this study, a white and a red wine were spiked with a mix of 23 pesticide residues from the group of fungicides (including botryticides), herbicides and insecticides. The influence of the following treatments on residue concentrations and volatile profiles were investigated: two activated charcoal products, a bentonite clay, two commer-cial mixed fining agents made of bentonite and charcoal, two yeast cell wall products, and a plant fiber-based novel filter additive. The results of this study show that all the agents tested reduced both residues and aromavolatile compounds in wine, with activated charcoal having the strongest effect and bentonite the weakest. The mixed agents and yeast wall products showed less aroma losses than charcoal products, but also lower residue reduction. Plant fibers showed good reduction of pesticides with moderate aroma damage, but these results need to be con-firmed under practical conditions.

Meso-scale future climate modeling (5 km resolution): application over French wine regions under the SRES A2 scenario (2041-2050)

In order to assess climate change at regional scales suitable to viticulture, the outputs of ARPEGE_Climat global model (resolution 0.5°) were downscaled using the Regional Atmospheric