OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 D-wines: use of LC-MS metabolomic space to discriminate italian mono-varietal red wines

D-wines: use of LC-MS metabolomic space to discriminate italian mono-varietal red wines

Abstract

Studying wine metabolome through multiple targeted methods is complicated and limitative; since grapes, yeasts, bacteria, oxygen, enological techniques and wine aging collaborate to deliver one of the richest metabolomic fingerprint. Therefore, untargeted metabolomics, that developed and evolved as a consequence of the need to obtain a comprehensive characterization of the organic molecules in any biological sample, is the current methodology offering the best coverage of wine metabolome. Taking into account the large genetic diversity, the diversity of the climate and of the agronomical practices, and the wide winemaking culture characterizing the Italian wines, the metabolomic untargeted approach appears as an appropriate analytical tool to study such metabolic space. 

According to the national project D-Wines, 110 single-cultivar red wines from the 2016 vintage were collected directly from wineries across different regions of Italy: Sangiovese from Tuscany and Romagna, Nebbiolo from Piemont, Aglianico from Campania, Nerello Mascalese from Sicily, Primitivo from Apulia, Raboso and Corvina from Veneto, Cannonau from Sardinia, Teroldego from Trentino, Sagrantino from Umbria, and Montepulciano from Abruzzo. The wines were analyzed according to a well-defined RP-UPLC-HRMS-QTOF-MS protocol. 

The results of the data analysis, after their validation: a) confirmed untargeted LC-MS-based metabolomics as a powerful authenticity tool; b) provided indications about the similarity between the cultivars, clustering the wines in three major groups (Primitivo – Nebbiolo, Corvina, Raboso, Sangiovese – Teroldego, Sagrantino, Cannonau, Nerello, Aglianico, Montepulciano); c) furnished a rich list of putative markers characterizing each cultivar, where Primitivo, Teroldego and Nebbiolo had the maximum number of unique putative markers; d) revealed that the putative markers were not only phenolic metabolites; and e) pointed out rt/mz chromatographic sections helpful to distinguish each cultivar from the others. 

This study, together with other D-Wines analytical results, is directed to understand the diversity of Italian red wines and to characterize them in term of metabolic space coverage/variability and taste and in consequence comprehend better their quality. 

Acknowledgements

MIUR project N. 20157RN44Y. A. Curioni, A. Gambuti, V. Gerbi, S. Giacosa, G.P. Parpinello, D. Perenzoni, P. Piombino, A. Rinaldi, S. Río Segade, B. Simonato, G. Tornielli, S. Vincenzi

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Panagiotis Arapitsas, Maurizio Ugliano, Matteo Marangon, Luigi Moio, Luca Rolle, Andrea Versari, Fulvio Mattivi

Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (Italy)
Department of Biotechnology, University of Verona (Italy)
Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova (Italy)
Department of Agricultural Sciences, University of Naples Federico II, Avellino (Italy); Dipartimento di Scienze Agrarie, Forestali e Alimentari, Universitàdi Torino (Italy)
Department of Agricultural and Food Sciences, University of Bologna (Italy); Centre Agriculture Food Environment, University of Trento (Italy)

Contact the author

Keywords

mass spectrometry, wine authenticity, bioinformatics, metabolomics 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Outside and inside grapevine roots: arbuscular mycorrhizal fungal communities in a ‘nebbiolo’ vineyard 

In field conditions, grapevine roots are colonized by arbuscular mycorrhizal fungi (AMF). Little is known about the species composition of AMF communities associated to grapevine.

Seasonal dynamics of water and sugar compartmentalization in grape clusters under deficit irrigation

Water stress triggers functional compartmentalization in grapevines, influencing how resources are allocated to different plant organs.

Survey assessing different practices for mechanical winter pruning in Southern France vineyards

Winter pruning is today the longest operation for hand workers in the vineyard. Over the last years, mechanical pruning practices have become popular in southern France vineyards to respond to competitiveness issue especially for the basic and mid-range wine production. Wine farmers have developed different vineyard management techniques associated with mechanical winter pruning. They sought to be precise or not to control the buds number per vine.

How to make a mineral wine? Producers’ representations vs. scientific data

In this video recording of the IVES science meeting 2023, Jordi Ballester (Centre des sciences du goût et de l’alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, Dijon, France) speaks on how to make a mineral wine, producers’ representations vs. scientific data. This presentation is based on an original article accessible for free on OENO One.

Above and below: soil moisture and soil temperature interact to alter grapevine water relations

The combined effect of soil moisture and soil temperature on grapevine physiology is gaining interest in the context of global warming.