terclim by ICS banner
IVES 9 IVES Conference Series 9 EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Abstract

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2]. Therefore, understanding the factors that affect the hydrolysis of esters is crucial for wine producers. Although the hydrolysis of esters in wine matrices has been extensively studied for decades [3], the role of transition metal ions on the fate of esters in wines is still poorly documented.

This study aimed to explore the influence of Fe, Mn and Cu on the evolution of the ester composition of young white wines after 8-weeks of artificial ageing at 30 ºC under different conditions. Young white wines were spiked with different mixtures of Fe, Mn and Cu, to reach final concentrations of 5 mg/L, 4 mg/L and 1 mg/L of metal ions, respectively. Wines were then aged in 20 mL SPME vials, full and half-full (oxidative conditions).

The presence of gallic acid was also tested in interaction with metal ions added.

The presence of the Fe, Mn, and Cu mixture, described, above significantly increased the hydrolysis of HAAs and EEFAs in two different wine samples, with an 18% and 25% drop in HAAs and a 12% and 15% drop in EEFAs, respectively, compared to the same wine samples without the addition of metal ions. The oxidative aging did not affect this trend, except for EEFAs with long carbon chains (C10 and C12), which showed a decrease in concentration when the vial was half-full in comparison to full vial.

In contrast, the presence of gallic acid at 50 mg/L limited the effect of the metal ion mixture on esters hydrolysis. Each metal ion was also tested individually. Fe alone or in association with Cu had the same impact as the mixture of the three metal ions. Surprisingly, esters hydrolysis was significantly boosted with the addition of Cu and Mn alone or in mixture, but also when Fe was mixed with Mn. The addition of Mn alone had the strongest impact with a drop of 40% and 30% of HAAs and EEFAs concentration, respectively.

This work opens new research perspectives on how transition metal ions can shape the evolution of wine esters and, more broadly, the aromatic composition of wine.

1. Antalick, G.; Perello, M.-C.; de Revel, G. Esters in Wines: New Insight through the establishment of a Database of French wines. Am. J. Enol. Vitic. 2014, 65, 293-304.
2. Gammacurta, M; Marchand, S.; Albertin, W.; Moine, V.; de Revel G. Impact of yeast strain on ester levels and fruity aroma persistence during aging of Bordeaux red wines. J. Agric. Food Chem. 2014, 62(23), 5378-89.
3. Ribéreau-Gayon, P., Y. Glories, A. Maujean, and D. Dubourdieu. Handbook of Enology. Vol 2. The Chemistry of Wine: Stabilisation and Treatments. Wiley & Sons, Chichester, 2000.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Tatjana Radovanović Vukajlović¹, Mitja Martelanc¹, Martin Šala², Vid Simon Šelih², Melita Sternad Lemut¹, Guillaume Antalick¹

1. University of Nova Gorica, Wine Research Centre, Lanthieri Palace, Glavni trg 8, SI-5271 Vipava, Slovenia
2. National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia

Contact the author*

Keywords

esters, transition metal ions, hydrolysis, radical scavengers

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

The complexity of the wine matrix makes the monitoring of the winemaking process crucial. Fourier Transform Infrared Spectroscopy (FTIR) along with chemometrics is considered an effective analytical tool combining good accuracy, robustness, high sample throughput, and “green character”. Portable and non-portable FTIR devices are already used by the wine industry for routine analysis. However, the analytical calibrations need to be enriched, and some others are still waiting to be thoroughly developed.

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.

BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

Sulphur dioxide has been used for many years for its antimicrobial, antioxidant and antioxydasic properties in winemaking but nowadays, it is a source of controversy. Indeed, consumers are more attentive to the naturalness of their foods and beverages and the legislation is changing to reduce the total SO₂ levels allowed in wines. To limit and replace the doses of sulphur dioxide applied, winemakers can now use bioprotection consisting in live yeast addition as alternative,seems to be promising. This process, lightly used in from the food industry, allows to colonize the environment and limit the development or even eliminate undesirable microorganisms without altering the sensory properties of the product.

TANNINS AND ANTHOCYANINS KINETICS OF EXTRACTION FROM ARINARNOA, MARSELAN AND TANNAT UNDER DIFFERENT WINEMAKING TECHNIQUES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines.

METABOLIC INTERACTIONS OF SACCHAROMYCES CEREVISIAE COCULTURES: A WAY TO EXTEND THE AROMA DIVERSITY OF CHARDONNAY WINE

Yeast co-inoculations in winemaking have been investigated in various applications, but most often in the context of modulating the aromatic profiles of wines. Our study aimed to characterize S. cerevisiae interactions and their impact on wine by taking an integrative approach. Three cocultures and corresponding pure cultures of S. cerevisiae were characterized according to their fermentative capacities, the chemical composition and aromatic profile of the associated Chardonnay wines. The various strains studied within the cocultures showed different behaviors regarding their development.