terclim by ICS banner
IVES 9 IVES Conference Series 9 EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Abstract

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2]. Therefore, understanding the factors that affect the hydrolysis of esters is crucial for wine producers. Although the hydrolysis of esters in wine matrices has been extensively studied for decades [3], the role of transition metal ions on the fate of esters in wines is still poorly documented.

This study aimed to explore the influence of Fe, Mn and Cu on the evolution of the ester composition of young white wines after 8-weeks of artificial ageing at 30 ºC under different conditions. Young white wines were spiked with different mixtures of Fe, Mn and Cu, to reach final concentrations of 5 mg/L, 4 mg/L and 1 mg/L of metal ions, respectively. Wines were then aged in 20 mL SPME vials, full and half-full (oxidative conditions).

The presence of gallic acid was also tested in interaction with metal ions added.

The presence of the Fe, Mn, and Cu mixture, described, above significantly increased the hydrolysis of HAAs and EEFAs in two different wine samples, with an 18% and 25% drop in HAAs and a 12% and 15% drop in EEFAs, respectively, compared to the same wine samples without the addition of metal ions. The oxidative aging did not affect this trend, except for EEFAs with long carbon chains (C10 and C12), which showed a decrease in concentration when the vial was half-full in comparison to full vial.

In contrast, the presence of gallic acid at 50 mg/L limited the effect of the metal ion mixture on esters hydrolysis. Each metal ion was also tested individually. Fe alone or in association with Cu had the same impact as the mixture of the three metal ions. Surprisingly, esters hydrolysis was significantly boosted with the addition of Cu and Mn alone or in mixture, but also when Fe was mixed with Mn. The addition of Mn alone had the strongest impact with a drop of 40% and 30% of HAAs and EEFAs concentration, respectively.

This work opens new research perspectives on how transition metal ions can shape the evolution of wine esters and, more broadly, the aromatic composition of wine.

1. Antalick, G.; Perello, M.-C.; de Revel, G. Esters in Wines: New Insight through the establishment of a Database of French wines. Am. J. Enol. Vitic. 2014, 65, 293-304.
2. Gammacurta, M; Marchand, S.; Albertin, W.; Moine, V.; de Revel G. Impact of yeast strain on ester levels and fruity aroma persistence during aging of Bordeaux red wines. J. Agric. Food Chem. 2014, 62(23), 5378-89.
3. Ribéreau-Gayon, P., Y. Glories, A. Maujean, and D. Dubourdieu. Handbook of Enology. Vol 2. The Chemistry of Wine: Stabilisation and Treatments. Wiley & Sons, Chichester, 2000.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Tatjana Radovanović Vukajlović¹, Mitja Martelanc¹, Martin Šala², Vid Simon Šelih², Melita Sternad Lemut¹, Guillaume Antalick¹

1. University of Nova Gorica, Wine Research Centre, Lanthieri Palace, Glavni trg 8, SI-5271 Vipava, Slovenia
2. National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia

Contact the author*

Keywords

esters, transition metal ions, hydrolysis, radical scavengers

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

In Italy, in the past two decades, the rate of temperature increases (0.0369 °C per year) was slightly higher compared to the world average (0.0313 °C per year). It has also been indicated that the number and intensity of heat waves have increased considerably in the last decades. (IEA, 2022). Viticultural zones can be classified with climatic indexes. Huglin’s index (HI) considers the temperature in a definite area and has been considered as reliable to evaluate the thermal suitability for winegrape production (Zhang et al., 2023).

EXTRACTIBLE COMPOUNDS FROM MICROAGGLOMERATED CORK STOPPERS

After bottling, the wine continues to evolve during storage. The choice of the stopper is an important factor in this evolution. In addition to the oxygen permeability of the closure, the migration of stopper compounds into the wine can also have an impact on the wine organoleptic properties. Many studies have shown that transfers of volatile compounds from the stoppers into the wine can happen depending on the type of closure used (1). Moreover, when cork-made stoppers are used, the migration of phenolic compounds from the stopper into the wine can also occur (2, 3).

OTA DEGRADATION BY BACTERIAL LACCASEST

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degradation, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking.

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.

NEUROPROTECTIVE AND ANTI-INFLAMMATORY PROPERTIES OF HYDROXYTYROSOL: A PROMISING BIOACTIVE COMPONENT OF WINE

Hydroxytyrosol (HT) is a phenolic compound present in olives, virgin olive oil and wine. HT has attracted great scientific interest due to its biological activities which have been related with the ortho-dihydroxy conformation in the aromatic ring. In white and red wines, HT has been detected at concentrations ranging from 0.28 to 9.6 mg/L and its occurrence has been closely related with yeast metabolism of aromatic amino acids by Ehrlich pathway during alcoholic fermentation. One of the most promising properties of this compound is the neuroprotective activity against pathological mechanisms related with neurode-generative disorders including Alzheimer’s and Parkinson’s disease.