terclim by ICS banner
IVES 9 IVES Conference Series 9 EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Abstract

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2]. Therefore, understanding the factors that affect the hydrolysis of esters is crucial for wine producers. Although the hydrolysis of esters in wine matrices has been extensively studied for decades [3], the role of transition metal ions on the fate of esters in wines is still poorly documented.

This study aimed to explore the influence of Fe, Mn and Cu on the evolution of the ester composition of young white wines after 8-weeks of artificial ageing at 30 ºC under different conditions. Young white wines were spiked with different mixtures of Fe, Mn and Cu, to reach final concentrations of 5 mg/L, 4 mg/L and 1 mg/L of metal ions, respectively. Wines were then aged in 20 mL SPME vials, full and half-full (oxidative conditions).

The presence of gallic acid was also tested in interaction with metal ions added.

The presence of the Fe, Mn, and Cu mixture, described, above significantly increased the hydrolysis of HAAs and EEFAs in two different wine samples, with an 18% and 25% drop in HAAs and a 12% and 15% drop in EEFAs, respectively, compared to the same wine samples without the addition of metal ions. The oxidative aging did not affect this trend, except for EEFAs with long carbon chains (C10 and C12), which showed a decrease in concentration when the vial was half-full in comparison to full vial.

In contrast, the presence of gallic acid at 50 mg/L limited the effect of the metal ion mixture on esters hydrolysis. Each metal ion was also tested individually. Fe alone or in association with Cu had the same impact as the mixture of the three metal ions. Surprisingly, esters hydrolysis was significantly boosted with the addition of Cu and Mn alone or in mixture, but also when Fe was mixed with Mn. The addition of Mn alone had the strongest impact with a drop of 40% and 30% of HAAs and EEFAs concentration, respectively.

This work opens new research perspectives on how transition metal ions can shape the evolution of wine esters and, more broadly, the aromatic composition of wine.

1. Antalick, G.; Perello, M.-C.; de Revel, G. Esters in Wines: New Insight through the establishment of a Database of French wines. Am. J. Enol. Vitic. 2014, 65, 293-304.
2. Gammacurta, M; Marchand, S.; Albertin, W.; Moine, V.; de Revel G. Impact of yeast strain on ester levels and fruity aroma persistence during aging of Bordeaux red wines. J. Agric. Food Chem. 2014, 62(23), 5378-89.
3. Ribéreau-Gayon, P., Y. Glories, A. Maujean, and D. Dubourdieu. Handbook of Enology. Vol 2. The Chemistry of Wine: Stabilisation and Treatments. Wiley & Sons, Chichester, 2000.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Tatjana Radovanović Vukajlović¹, Mitja Martelanc¹, Martin Šala², Vid Simon Šelih², Melita Sternad Lemut¹, Guillaume Antalick¹

1. University of Nova Gorica, Wine Research Centre, Lanthieri Palace, Glavni trg 8, SI-5271 Vipava, Slovenia
2. National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia

Contact the author*

Keywords

esters, transition metal ions, hydrolysis, radical scavengers

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

As wine resilience is the result of different variables, including the wine pH and the concentration of wine components, a detailed knowledge of the relationships between the adjuvant to attain stability and the oenological medium is fundamental for process optimization and to increase wine durability till the time of consumption.

CHARACTERIZATION AND ANTIBACTERIAL ACTIVITY OF A POLYPHENOLIC EXTRACT OBTAINED BY GREEN SUPERCRITICAL CO₂ EXTRACTION FROM RED GRAPE POMACE

Upgrading wine industry solid wastes is considered as one of the main strategies to support the circular economy. Red grape pomaces constitute a rich source of polyphenols, which have been shown to possess antioxidant properties and to provide benefits for human and animal health. The objective of this work was to obtain and characterise polyphenolic extracts from red grape pomaces via green supercritical CO₂ extraction using ethanol as a co-solvent, and to evaluate their antibacterial activity against susceptible and multidrug-resistant Escherichia coli strains of animal intestinal origin.

IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

In Italy, in the past two decades, the rate of temperature increases (0.0369 °C per year) was slightly higher compared to the world average (0.0313 °C per year). It has also been indicated that the number and intensity of heat waves have increased considerably in the last decades. (IEA, 2022). Viticultural zones can be classified with climatic indexes. Huglin’s index (HI) considers the temperature in a definite area and has been considered as reliable to evaluate the thermal suitability for winegrape production (Zhang et al., 2023).

REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

Nitrogen (N) fertilizer is important for grape growth and the quality of wine. It is essential to address the mismatch between N application and wine composition. Cabernet Gernischt (Vitis vinifera L.), as one of the main wine-grape cultivars in China, was introduced to Yantai wine region in 1892. This grape cultivar is traditionally used for quality dry red wine with fruit, spices aroma, ruby red and full-bodied wines. In order to regulate vine growth and improve grape and wine quality, Cabernet Gernischt grapevines were subjected to decreased levels of N treatments, compared to normal N supply treatment, during grape growing seasons of 2019 and 2020.

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.