terclim by ICS banner
IVES 9 IVES Conference Series 9 EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Abstract

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2]. Therefore, understanding the factors that affect the hydrolysis of esters is crucial for wine producers. Although the hydrolysis of esters in wine matrices has been extensively studied for decades [3], the role of transition metal ions on the fate of esters in wines is still poorly documented.

This study aimed to explore the influence of Fe, Mn and Cu on the evolution of the ester composition of young white wines after 8-weeks of artificial ageing at 30 ºC under different conditions. Young white wines were spiked with different mixtures of Fe, Mn and Cu, to reach final concentrations of 5 mg/L, 4 mg/L and 1 mg/L of metal ions, respectively. Wines were then aged in 20 mL SPME vials, full and half-full (oxidative conditions).

The presence of gallic acid was also tested in interaction with metal ions added.

The presence of the Fe, Mn, and Cu mixture, described, above significantly increased the hydrolysis of HAAs and EEFAs in two different wine samples, with an 18% and 25% drop in HAAs and a 12% and 15% drop in EEFAs, respectively, compared to the same wine samples without the addition of metal ions. The oxidative aging did not affect this trend, except for EEFAs with long carbon chains (C10 and C12), which showed a decrease in concentration when the vial was half-full in comparison to full vial.

In contrast, the presence of gallic acid at 50 mg/L limited the effect of the metal ion mixture on esters hydrolysis. Each metal ion was also tested individually. Fe alone or in association with Cu had the same impact as the mixture of the three metal ions. Surprisingly, esters hydrolysis was significantly boosted with the addition of Cu and Mn alone or in mixture, but also when Fe was mixed with Mn. The addition of Mn alone had the strongest impact with a drop of 40% and 30% of HAAs and EEFAs concentration, respectively.

This work opens new research perspectives on how transition metal ions can shape the evolution of wine esters and, more broadly, the aromatic composition of wine.

1. Antalick, G.; Perello, M.-C.; de Revel, G. Esters in Wines: New Insight through the establishment of a Database of French wines. Am. J. Enol. Vitic. 2014, 65, 293-304.
2. Gammacurta, M; Marchand, S.; Albertin, W.; Moine, V.; de Revel G. Impact of yeast strain on ester levels and fruity aroma persistence during aging of Bordeaux red wines. J. Agric. Food Chem. 2014, 62(23), 5378-89.
3. Ribéreau-Gayon, P., Y. Glories, A. Maujean, and D. Dubourdieu. Handbook of Enology. Vol 2. The Chemistry of Wine: Stabilisation and Treatments. Wiley & Sons, Chichester, 2000.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Tatjana Radovanović Vukajlović¹, Mitja Martelanc¹, Martin Šala², Vid Simon Šelih², Melita Sternad Lemut¹, Guillaume Antalick¹

1. University of Nova Gorica, Wine Research Centre, Lanthieri Palace, Glavni trg 8, SI-5271 Vipava, Slovenia
2. National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia

Contact the author*

Keywords

esters, transition metal ions, hydrolysis, radical scavengers

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

MONOSACCHARIDE COMPOSITION AND POLYSACCHARIDE FAMILIES OF LYOPHILISED EXTRACTS OBTAINED FROM POMACES OF DIFFERENT WHITE GRAPE VARIETIES

The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).

IMPACT OF MINERAL AND ORGANIC NITROGEN ADDITION ON ALCOHOLIC FERMENTATION WITH S. CEREVISIAE

During alcoholic fermentation, nitrogen is one of essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of and wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (YAN) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species and leads to economic losses. Currently, grape musts are often characterized by low YAN concentration and an increase of sugars concentration due to global warming, making alcoholic fermentations even more difficult. YAN depletion can be corrected by addition of inorganic (ammonia) or organic (yeast derivatives products) nitrogen during alcoholic fermentation.

SENSORY IMPROVEMENT OF DEALCOHOLISED WINES

Interest and willing-ness to buy alcohol-free wines by customers is increasing for several years [1]. Due to the rising relevance of dealcoholised wines it is the objective of this study to contribute to a better understanding of the flavor variation among dealcoholised wines and to explore enological measures, how to improve final quality.
First a range of commercial, alcoholfree white wines were analysed by the holistic sensory method projective mapping, including a question for hedonic acceptance. Based on the combination of a non-target-HS-SPME-GC/MS analysis with sensory analysis we obtained a clustering of the wines into three groups.

IMPACT OF THE WINES’ QUALITY ON THE WINE DISTILLATES’ ORGANOLEPTIC PROFILE

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest (1 y 2) being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (3) and varies each year of harvest depending on the weather conditions (4).

EFFECT OF MICRO-OXYGENATION IN COLOR OF WINES MADE WITH TOASTED VINE-SHOOTS

The use of toasted vine-shoots (SEGs) as an enological tool is a new practice that seeks to improve wines, differentiating them and encouraging sustainable wine production. The micro-oxygenation (MOX) technique is normally combined with alternative oak products with the aim to simulate the oxygen transmission rate that takes place during the traditional barrel aging. Such new use for SEGs implies a reduction in color due to the absorption by the wood of the responsible compounds, therefore, given the known effect that MOX has shown to have on the modification of wine color, its use together with the SEGs could result in an interesting implementation with the aim to obtain final wines with more stable color over time.