terclim by ICS banner
IVES 9 IVES Conference Series 9 EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Abstract

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2]. Therefore, understanding the factors that affect the hydrolysis of esters is crucial for wine producers. Although the hydrolysis of esters in wine matrices has been extensively studied for decades [3], the role of transition metal ions on the fate of esters in wines is still poorly documented.

This study aimed to explore the influence of Fe, Mn and Cu on the evolution of the ester composition of young white wines after 8-weeks of artificial ageing at 30 ºC under different conditions. Young white wines were spiked with different mixtures of Fe, Mn and Cu, to reach final concentrations of 5 mg/L, 4 mg/L and 1 mg/L of metal ions, respectively. Wines were then aged in 20 mL SPME vials, full and half-full (oxidative conditions).

The presence of gallic acid was also tested in interaction with metal ions added.

The presence of the Fe, Mn, and Cu mixture, described, above significantly increased the hydrolysis of HAAs and EEFAs in two different wine samples, with an 18% and 25% drop in HAAs and a 12% and 15% drop in EEFAs, respectively, compared to the same wine samples without the addition of metal ions. The oxidative aging did not affect this trend, except for EEFAs with long carbon chains (C10 and C12), which showed a decrease in concentration when the vial was half-full in comparison to full vial.

In contrast, the presence of gallic acid at 50 mg/L limited the effect of the metal ion mixture on esters hydrolysis. Each metal ion was also tested individually. Fe alone or in association with Cu had the same impact as the mixture of the three metal ions. Surprisingly, esters hydrolysis was significantly boosted with the addition of Cu and Mn alone or in mixture, but also when Fe was mixed with Mn. The addition of Mn alone had the strongest impact with a drop of 40% and 30% of HAAs and EEFAs concentration, respectively.

This work opens new research perspectives on how transition metal ions can shape the evolution of wine esters and, more broadly, the aromatic composition of wine.

1. Antalick, G.; Perello, M.-C.; de Revel, G. Esters in Wines: New Insight through the establishment of a Database of French wines. Am. J. Enol. Vitic. 2014, 65, 293-304.
2. Gammacurta, M; Marchand, S.; Albertin, W.; Moine, V.; de Revel G. Impact of yeast strain on ester levels and fruity aroma persistence during aging of Bordeaux red wines. J. Agric. Food Chem. 2014, 62(23), 5378-89.
3. Ribéreau-Gayon, P., Y. Glories, A. Maujean, and D. Dubourdieu. Handbook of Enology. Vol 2. The Chemistry of Wine: Stabilisation and Treatments. Wiley & Sons, Chichester, 2000.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Tatjana Radovanović Vukajlović¹, Mitja Martelanc¹, Martin Šala², Vid Simon Šelih², Melita Sternad Lemut¹, Guillaume Antalick¹

1. University of Nova Gorica, Wine Research Centre, Lanthieri Palace, Glavni trg 8, SI-5271 Vipava, Slovenia
2. National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia

Contact the author*

Keywords

esters, transition metal ions, hydrolysis, radical scavengers

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine.

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.

WINE RACKING IN THE WINERY AND THE USE OF INERT GASES: CONTROL AND OPTIMIZATION OF THE PROCESS

Atmospheric oxygen (O₂) generates oxidation in wines that affect their physicochemical and sensory evolution. The O₂ uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O₂ uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The aim was to study the uptake of O₂ during the racking of a model wine as a reference and to compare with purging the destination tank with different inert gases.

OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

The light exposure of wine can be detrimental as a relevant loss of aromas takes place [1] and light-induced reactions can occur. The latter involves riboflavin (RF), a photosensitive compound, that is fully reduced by acquiring two electrons. When the electron-donor is methionine, the light-struck taste (LST) can appear leading to cooked cabbage, onion and garlic odours-like [2]. The use of oenological tannins can limit the appearance of LST in both model wine [3] and white wine [4]. This research aimed to evaluate the impact of certain oenological tannins, selected in a previous study as the most effective against LST [5], in both white and rosé wines.

MICROFLUIDIC PLATFORM FOR SORTING YEAST CELLS ACCORDING TO THEIR MORPHOLOGY

In this work we briefly present a microfluidic device aiming to sort yeast cells according to their morphology. The technology is based upon microfluidic chips made out of Polydimethylsiloxane and glass using soft lithography processes and replica molding. The microfluidic device was used for encapsulating single yeast cells in liquid droplets containing growth medium. Liquid droplet containing yeast cells were sorted using a real time imaging and decision-making process.