terclim by ICS banner
IVES 9 IVES Conference Series 9 HYDROXYTYROSOL PRODUCTION BY DIFFERENT YEAST STRAINS: SACCHAROMYCES AND NON-SACCHAROMYCES AND THE RELATION WITH THE NITROGEN CONSUMPTION

HYDROXYTYROSOL PRODUCTION BY DIFFERENT YEAST STRAINS: SACCHAROMYCES AND NON-SACCHAROMYCES AND THE RELATION WITH THE NITROGEN CONSUMPTION

Abstract

Hydroxytyrosol (HT) is a phenolic compound with extensive bioactive properties. It is present in olives, olive oil and wines. Its occurrence in wines is partly due to yeast synthetise tyrosol from tyrosine by the Ehrlich pathway, which is subsequently hydroxylated to .

The aim of the present work is to study how different yeast strains can influence in the HT production and, how the different nitrogen consumption of each strain can interfere the production of bioactive compounds.

A total of six strains were evaluated for the production of HT, four of them were Saccharomyces and two of them were non-Saccharomyces. The Saccharomyces ones were Red Fruit, QA23, Uvaferm and Lalvin Rhone, and the non-Saccharomyces were Torulaspora delbrueckii and Metschnikowia pulcherrima.

In order to know the nitrogen consumption of each yeast, the nitrogen content in the extracellular media was measured at the early days of the fermentation.

The alcoholic fermentation was performed in synthetic must prepared according to the instructions of Riou et al., 1997. Fermentation was carried out in sextuplicate for each strain. lasting 10 days each. A total of 360 samples were collected. The growth of yeast, the weight of the flask, density, and the Baume grade of the must were recorded daily to monitor the fermentation.

Prior to the analyses of the compounds, a cleaning step was performed using a Solid Phase Extraction (SPE). The protocol for the SPE was optimized following the instructions of AOAC, 20212. All the compounds of the Erlich pathway (tyrosine, hydroxyphenylacetic acid, tyrosol, hydroxyphenylacetaldehyde acid, hydroxyphenylpyruvic acid and hydroxytyrosol) were evaluated thanks to a validated method of UHPLC-HRMS. The analysis was carried out in a Waters Acquity UHPLC (Milford, Massachusetts, USA) coupled to a Waters Xevo TQ (Milford, Massachusetts, USA) triple quadrupole mass spectrometer. The MassLynx MS software was used. The column used was an Acquity UPLC BEH C18. The chromatographic conditions consisted of two mobile phases, water with 0.2% acetic acid (A) and acetonitrile (B), with a gradient elution programmed.

The obtained results show that the Saccharomyces strains have a higher production of HT than non-Saccharomyces. Significant differences were observed between strains for the production of HT. The highest production was in day 5 for Uvaferm, reaching a concentration of 4 ng/mL. A different nitrogen consumption was observed for each yeast.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Marina Gonzalez-Ramirez, Ana B. Cerezo, Cristina Ubeda, Ana M. Troncoso, M. Carmen Garcia-Parrilla

1. Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González 2, 41012 Sevilla, Spain

Contact the author*

Keywords

hydroxytyrosol, Ehrlich pathway, yeast, tyrosol

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

STATISTICAL COMPARISON OF GROWTH PARAMETERS OF NINE BIOPROTECTION STRAINS IMPLEMENTED ON ARTIFICIALLY CONTAMINATED SYNTHETIC MUST

In recent years, consumer demand for products without chemical additives increased, becoming a priority for the wine sector. SO₂ is widely used for its multiple properties including antiseptics, antioxidants and antioxidasics and the strategy of bioprotection in winemaking represents now an alternative to this chemical additive. In oenology, results have highlighted the interest of bioprotection to limit the development of microorganisms like Hanseniaspora uvarum and thus reduce the doses of sulphite. Indeed, this species is considered because of its acetic acid and methyl butyl acetate production, the latter can cover the varietal character of wines.

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

SENSORY IMPROVEMENT OF DEALCOHOLISED WINES

Interest and willing-ness to buy alcohol-free wines by customers is increasing for several years [1]. Due to the rising relevance of dealcoholised wines it is the objective of this study to contribute to a better understanding of the flavor variation among dealcoholised wines and to explore enological measures, how to improve final quality.
First a range of commercial, alcoholfree white wines were analysed by the holistic sensory method projective mapping, including a question for hedonic acceptance. Based on the combination of a non-target-HS-SPME-GC/MS analysis with sensory analysis we obtained a clustering of the wines into three groups.

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.