terclim by ICS banner
IVES 9 IVES Conference Series 9 PREVALENCE OF OAK-RELATED AROMA COMPOUNDS IN PREMIUM WINES

PREVALENCE OF OAK-RELATED AROMA COMPOUNDS IN PREMIUM WINES

Abstract

Barrel fermentation and barrel-ageing of wine are commonly utilised practices in premium wine production. The wine aroma compounds related to barrel contact are varied and can enhance a range of wine aromas and flavours, such as ‘struck flint’, ‘caramel’, ‘red berry’, ‘toasty’ and ‘nutty’, as well as conventional oaky characters such as ‘vanilla’, ‘spice’, ‘smoky’ and ‘coconut’. A survey of commercially produced premium Shiraz, Cabernet Sauvignon, Pinot Noir and Chardonnay wines was conducted, assessing the prevalence of compounds that have been proposed as barrel-ageing markers¹ including oak lactones, volatile phenols, furanones, aldehydes, thiazoles2,3, phenylmethanethiol⁴ and 2-furylmethanethiol.⁵

Accurate quantitative data is necessary to help understand the compounds which might influence these aromas but their analysis is often not a trivial undertaking. The furanones, especially furaneol, are difficult to measure accurately in wine as they are very polar. Thus, an improved stable isotope dilution assay was developed using automated liquid–liquid microextraction and multidimensional–gas chromatography–mass spectrometry. Also, the quantification of aldehydes was simplified using automated headspace solid-phase microextraction and gas chromatography–tandem mass spectrometry with invial derivatisation. Thiazoles were quantified utilising gas chromatography–tandem mass spectrome-try. Other targeted volatile compounds were quantified using previously published stable isotope dilution assay methods that are routinely used in-house. Wide concentration ranges were found for many of the targeted aroma compounds and this information will direct further detailed studies.

 

1. Jarauta, I.; Cacho, J.; Ferreira, V. Concurrent phenomena contributing to the formation of the aroma of wine during aging in oak wood:  an analytical study. J. Agric. Food Chem. 2005, 53 (10), 4166-4177.
2. Gros, J.; Lavigne, V.; Thibaud, F.; Gammacurta, M.; Moine, V.; Dubourdieu, D.; Darriet, P.; Marchal, A. Toward a molecular understanding of the typicality of Chardonnay wines: identification of powerful aromatic compounds reminiscent of hazelnut. 
J. Agric. Food Chem. 2017, 65 (5), 1058-1069.
3. Marchand, S.; de Revel, G.; Bertrand, A., Approaches to Wine Aroma:  Release of aroma compounds from reactions between cysteine and carbonyl compounds in wine. J. Agric. Food Chem. 2000, 48, (10), 4890-4895.
4. Piano, F.; Petrozziello, M.; Vaudano, E.; Bonello, F.; Ferreira, V.; Zapata, J.; Hernández-Orte, P. Aroma compounds and sensory characteristics of Arneis Terre Alfieri DOC wines: the concentration of polyfunctional thiols and their evolution in relation to different ageing conditions. Eur. Food Res. Technol. 2014, 239 (2), 267-277.
5. Blanchard, L.; Tominaga, T.; Dubourdieu, D. Formation of furfurylthiol exhibiting a strong coffee aroma during oak barrel fermentation from furfural released by toasted staves. J. Agric. Food Chem. 2001, 49 (10), 4833-4835. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Tracey SIEBERT¹, Flynn WATSON¹, Mark SOLOMON¹, Maddy JIANG¹, Tabea SÖNCKSEN1,2, Lisa PISANIELLO¹, Leigh FRANCIS¹, Marlize BEKKER¹

1.The Australian Wine Research Institute, Waite Precinct, Hartley Grove cnr Paratoo Road, Urrbrae 5064, Australia
2.Technical University of Braunschweig, Universitätsplatz 2, 38106, Braunschweig, Germany

Contact the author*

Keywords

oak barrel, wine, aroma compounds, quantitation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.

IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

Non-Saccharomyces starter cultures became increasingly popular over the years because of their potential to produce more distinctive and unique wines. The major benefit of the use of Lachancea thermotolerans as a fermentation starter is its ability to produce relevant amounts of lactic acid and reduce alcoholic strength, making it valuable for mitigating negative impacts of climate change on grapes and wine quality. Besides, like any other non-Saccharomyces yeast, L. thermotolerans can significantly affect a whole range of other physico-chemical wine parameters.

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification.

PROGRESS OF STUDIES OF LEES ORIGINATING FROM THE FIRST ALCOHOLIC FERMENTATION OF CHAMPAGNE WINES

Champagne wines are produced via a two-step process: the first is an initial alcoholic fermentation of grape must that produces a still base wine, followed by a second fermentation in bottle – the prise de mousse – that produces the effervescence. This appellation produces non-vintage sparkling wines composed of still base wines assembled from different vintages, varieties, and regions. These base wines, or “reserve wines,” are typically conserved on their fine lies and used to compensate for quality variance between vintages (1). Continuously blending small amounts of these reserve wines into newer ones also facilitates preserving the producer’s “house style.”

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.