terclim by ICS banner
IVES 9 IVES Conference Series 9 PREVALENCE OF OAK-RELATED AROMA COMPOUNDS IN PREMIUM WINES

PREVALENCE OF OAK-RELATED AROMA COMPOUNDS IN PREMIUM WINES

Abstract

Barrel fermentation and barrel-ageing of wine are commonly utilised practices in premium wine production. The wine aroma compounds related to barrel contact are varied and can enhance a range of wine aromas and flavours, such as ‘struck flint’, ‘caramel’, ‘red berry’, ‘toasty’ and ‘nutty’, as well as conventional oaky characters such as ‘vanilla’, ‘spice’, ‘smoky’ and ‘coconut’. A survey of commercially produced premium Shiraz, Cabernet Sauvignon, Pinot Noir and Chardonnay wines was conducted, assessing the prevalence of compounds that have been proposed as barrel-ageing markers¹ including oak lactones, volatile phenols, furanones, aldehydes, thiazoles2,3, phenylmethanethiol⁴ and 2-furylmethanethiol.⁵

Accurate quantitative data is necessary to help understand the compounds which might influence these aromas but their analysis is often not a trivial undertaking. The furanones, especially furaneol, are difficult to measure accurately in wine as they are very polar. Thus, an improved stable isotope dilution assay was developed using automated liquid–liquid microextraction and multidimensional–gas chromatography–mass spectrometry. Also, the quantification of aldehydes was simplified using automated headspace solid-phase microextraction and gas chromatography–tandem mass spectrometry with invial derivatisation. Thiazoles were quantified utilising gas chromatography–tandem mass spectrome-try. Other targeted volatile compounds were quantified using previously published stable isotope dilution assay methods that are routinely used in-house. Wide concentration ranges were found for many of the targeted aroma compounds and this information will direct further detailed studies.

 

1. Jarauta, I.; Cacho, J.; Ferreira, V. Concurrent phenomena contributing to the formation of the aroma of wine during aging in oak wood:  an analytical study. J. Agric. Food Chem. 2005, 53 (10), 4166-4177.
2. Gros, J.; Lavigne, V.; Thibaud, F.; Gammacurta, M.; Moine, V.; Dubourdieu, D.; Darriet, P.; Marchal, A. Toward a molecular understanding of the typicality of Chardonnay wines: identification of powerful aromatic compounds reminiscent of hazelnut. 
J. Agric. Food Chem. 2017, 65 (5), 1058-1069.
3. Marchand, S.; de Revel, G.; Bertrand, A., Approaches to Wine Aroma:  Release of aroma compounds from reactions between cysteine and carbonyl compounds in wine. J. Agric. Food Chem. 2000, 48, (10), 4890-4895.
4. Piano, F.; Petrozziello, M.; Vaudano, E.; Bonello, F.; Ferreira, V.; Zapata, J.; Hernández-Orte, P. Aroma compounds and sensory characteristics of Arneis Terre Alfieri DOC wines: the concentration of polyfunctional thiols and their evolution in relation to different ageing conditions. Eur. Food Res. Technol. 2014, 239 (2), 267-277.
5. Blanchard, L.; Tominaga, T.; Dubourdieu, D. Formation of furfurylthiol exhibiting a strong coffee aroma during oak barrel fermentation from furfural released by toasted staves. J. Agric. Food Chem. 2001, 49 (10), 4833-4835. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Tracey SIEBERT¹, Flynn WATSON¹, Mark SOLOMON¹, Maddy JIANG¹, Tabea SÖNCKSEN1,2, Lisa PISANIELLO¹, Leigh FRANCIS¹, Marlize BEKKER¹

1.The Australian Wine Research Institute, Waite Precinct, Hartley Grove cnr Paratoo Road, Urrbrae 5064, Australia
2.Technical University of Braunschweig, Universitätsplatz 2, 38106, Braunschweig, Germany

Contact the author*

Keywords

oak barrel, wine, aroma compounds, quantitation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

Varietal innovation is a major lever for meeting the challenges of the agro-ecological transition of vi-neyards and their adaptation to climate change. To date, selection work has already begun in the Bordeaux region through the Newvine project. The aim of this project is to create new vine varieties with resistance to mildew and powdery mildew, adapted to the climatic conditions of the Bordeaux region and enabling the production of wines that are in line with consumer tastes and the expected typicity of Bordeaux wines.

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.

WINE CONSUMER TRADE-OFF BETWEEN ORGANOLEPTIC CHARACTERISTICS AND SUSTAINABLE CLAIMS. AN EXPERIMENT ON RED WINES FROM BORDEAUX REGION

In economics, the perception of wine quality is not limited to sensorial characteristics: an indication of the region of production significantly affects the perception of quality and consumers’ WTP ([1]; [2]). However, [3] or more recently [4] show that even if a wine has an organic label, the taste of wine remains the predominant criterion in consumer preferences. The contribution of our experiment is to evaluate the impact of responsible attributes (organic label, Non Added Sulfites, HVE certification) on the appreciation of several red wines on the market. More than 280 consumers participated to the present study and they perform 25 tastings divided into 5 different sessions. 20 different red wines from Bordeaux Area are tasted.

POTENTIAL OF PEPTIDASES FOR AVOIDING PROTEIN HAZES IN MUST AND WINE

Haze formation in wine during transportation and storage is an important issue for winemakers, since turbid wines are unacceptable for sale. Such haze often results from aggregation of unstable grape proteinaceous colloids. To date, foreseeably unstable wines need to be treated with bentonite to remove these, while excessive quantities, which are often required, affect the wine volume and quality (Cosme et al. 2020). One solution to avoid these drawbacks might be the use of peptidases. Marangon et al. (2012) reported that Aspergillopepsins I and II were able to hydrolyse the respective haze-relevant proteins in combination with a flash pasteurisation. In 2021, the OIV approved this enzymatic treatment for wine stabilisation (OIV-OENO 541A and 541B).