terclim by ICS banner
IVES 9 IVES Conference Series 9 PREVALENCE OF OAK-RELATED AROMA COMPOUNDS IN PREMIUM WINES

PREVALENCE OF OAK-RELATED AROMA COMPOUNDS IN PREMIUM WINES

Abstract

Barrel fermentation and barrel-ageing of wine are commonly utilised practices in premium wine production. The wine aroma compounds related to barrel contact are varied and can enhance a range of wine aromas and flavours, such as ‘struck flint’, ‘caramel’, ‘red berry’, ‘toasty’ and ‘nutty’, as well as conventional oaky characters such as ‘vanilla’, ‘spice’, ‘smoky’ and ‘coconut’. A survey of commercially produced premium Shiraz, Cabernet Sauvignon, Pinot Noir and Chardonnay wines was conducted, assessing the prevalence of compounds that have been proposed as barrel-ageing markers¹ including oak lactones, volatile phenols, furanones, aldehydes, thiazoles2,3, phenylmethanethiol⁴ and 2-furylmethanethiol.⁵

Accurate quantitative data is necessary to help understand the compounds which might influence these aromas but their analysis is often not a trivial undertaking. The furanones, especially furaneol, are difficult to measure accurately in wine as they are very polar. Thus, an improved stable isotope dilution assay was developed using automated liquid–liquid microextraction and multidimensional–gas chromatography–mass spectrometry. Also, the quantification of aldehydes was simplified using automated headspace solid-phase microextraction and gas chromatography–tandem mass spectrometry with invial derivatisation. Thiazoles were quantified utilising gas chromatography–tandem mass spectrome-try. Other targeted volatile compounds were quantified using previously published stable isotope dilution assay methods that are routinely used in-house. Wide concentration ranges were found for many of the targeted aroma compounds and this information will direct further detailed studies.

 

1. Jarauta, I.; Cacho, J.; Ferreira, V. Concurrent phenomena contributing to the formation of the aroma of wine during aging in oak wood:  an analytical study. J. Agric. Food Chem. 2005, 53 (10), 4166-4177.
2. Gros, J.; Lavigne, V.; Thibaud, F.; Gammacurta, M.; Moine, V.; Dubourdieu, D.; Darriet, P.; Marchal, A. Toward a molecular understanding of the typicality of Chardonnay wines: identification of powerful aromatic compounds reminiscent of hazelnut. 
J. Agric. Food Chem. 2017, 65 (5), 1058-1069.
3. Marchand, S.; de Revel, G.; Bertrand, A., Approaches to Wine Aroma:  Release of aroma compounds from reactions between cysteine and carbonyl compounds in wine. J. Agric. Food Chem. 2000, 48, (10), 4890-4895.
4. Piano, F.; Petrozziello, M.; Vaudano, E.; Bonello, F.; Ferreira, V.; Zapata, J.; Hernández-Orte, P. Aroma compounds and sensory characteristics of Arneis Terre Alfieri DOC wines: the concentration of polyfunctional thiols and their evolution in relation to different ageing conditions. Eur. Food Res. Technol. 2014, 239 (2), 267-277.
5. Blanchard, L.; Tominaga, T.; Dubourdieu, D. Formation of furfurylthiol exhibiting a strong coffee aroma during oak barrel fermentation from furfural released by toasted staves. J. Agric. Food Chem. 2001, 49 (10), 4833-4835. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Tracey SIEBERT¹, Flynn WATSON¹, Mark SOLOMON¹, Maddy JIANG¹, Tabea SÖNCKSEN1,2, Lisa PISANIELLO¹, Leigh FRANCIS¹, Marlize BEKKER¹

1.The Australian Wine Research Institute, Waite Precinct, Hartley Grove cnr Paratoo Road, Urrbrae 5064, Australia
2.Technical University of Braunschweig, Universitätsplatz 2, 38106, Braunschweig, Germany

Contact the author*

Keywords

oak barrel, wine, aroma compounds, quantitation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

HOW TO EVALUATE THE QUALITY OF NATURAL WINES?

The movement of Natural wines has clearly increased in the last few years, to reach a high demand from consumers nowadays. Switzerland has not been left out of this movement and has created a dedicated association in 2021. This association has the ambition to develop a specific tasting sheet for natural wines. The study of the tasting notes shows that the olfactory description of wines is recent but predominant today. But wine is a product makes to be drunk and not (just) to smell it. Based on these findings, a new 100-point tasting sheet has been developed. The main characteristics are 1) an evaluation in the mouth before the description of the olfaction, 2) to give 50% of the points on the judgment for the mouth characteristics, 3) to pejorate the visual aspects only if the wine is judged as “not drinkable” and 4) to express personal emotions.

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification.

WINE RACKING IN THE WINERY AND THE USE OF INERT GASES: CONTROL AND OPTIMIZATION OF THE PROCESS

Atmospheric oxygen (O₂) generates oxidation in wines that affect their physicochemical and sensory evolution. The O₂ uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O₂ uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The aim was to study the uptake of O₂ during the racking of a model wine as a reference and to compare with purging the destination tank with different inert gases.

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

IDENTIFICATION AND LEVELS OF PHENOLIC COMPOUNDS (TANINS, ANTHO-CYANS) IN RED VARIETAL WINES (PROKUPAC AND BLACK TAMJANIKA) FROM SERBIA

The phenolic compounds of red wines represent a source of numerous benefits for human health, which is why they are a constant subject of scientific research. Winemaking in Serbia has a growing economic significance, with particularly autochthonous varieties included [1]. This research identifies and quantifies phenolic compounds of Serbian red varietal wines of Prokupac and Black Tamjanika varieties. Quantification of the level of phenolics has been conducted, including molecular tannins [(+)-catechin, (-)-epicatechin, procyanidin dimers B1, B2, B3, B4], molecular anthocyanins, and the mean degree of polymerization of tannins by HPLC by UV detection, total antioxidant capacity via spectrophotometric methods and chromatic characteristics via CIELAB.