OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 LC-MS based metabolomics and target analysis to study the chemical evolution of wines stored under different redox conditions

LC-MS based metabolomics and target analysis to study the chemical evolution of wines stored under different redox conditions

Abstract

Oxygen is a key player in oenology, since its effects can be a blessing, benefiting wine quality, or a curse causing irreversible damage. Therefore, many modern winemaking choices tend to favor reduction, even if the severe lack of oxygen can be responsible for a loss in quality due to the formation of Volatile Sulfur Compounds (VSCs) able to cause aroma depreciation, such as H2S and MeSH. The aim of this study was to measure the changes caused to the metabolic space of several red and white wines stored under different levels of oxidative or reductive conditions.

Twelve wines (8 reds and 4 whites) were stored in strict anoxic conditions at 25 ºC (1, 2 and 3 months) and also at 35 ºC for 3 months. Aliquots of the same wines were also micro-oxygenated at 25 ºC during 3 months at different doses of oxygen. The redox potential of all samples was measured and then they were analyzed with an untargeted approach protocol by using an UPLC-HRMS-QTOF instrument to register their metabolic fingerprint; and with a targeted method by using a GC-SCD instrument to analyze the free and Brine Releasable (BR) forms of VSCs. A typical in-house workflow for the data analysis of the metabolic data was used for the quality control of the data-set and for the biomarker discovery and annotation.

The redox potential measurements indicated the reliability of the sample set, since as expected it increased in the presence of oxygen and decreased in anoxic conditions. The LC-MS untargeted analysis generated a dataset of over 10000 features, which after the statistical analysis our attention was focused to approximately 150 tentative markers. These markers were classified in four groups depending on their behaviour under the different conditions. Between the markers were annotated various anthocyanins, such as peonidin 3-glucoside-catechin which decreased under oxidative conditions but remained stable in reduced samples. By contrast, malvidin 3-glucoside decreased also under anoxic conditions although at lower rates with respect to oxidative conditions. Some sulfonated indoles were identified as markers of oxidation conditions. As far as the free VSCs, the highest concentrations were determined in the more reduced samples. The study provides a new understanding about the role of oxygen and of its absence in wine aging.

Acknowledgements

Work funded by the Spanish MCIU AGL2017-87373-C3-1R. I.O. received the grant (CB 8/18) from “Programa Ibercaja-CAI Estancias de Investigación” funded by Universidad de Zaragoza, Fundación Bancaria Ibercaja and Fundación CAI.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Ignacio Ontañón, Diego Sánchez, Fulvio Mattivi, Vicente Ferreira, Panagiotis Arapitsas

Laboratorio de Análisis del Aroma y Enología. Departamento de Química Analítica. Facultad de Ciencias. Instituto Agroalimentario de Aragón –IA2- (Universidad de Zaragoza-CITA). C/ Pedro Cerbuna, 12. 50009. Zaragoza, Spain.
Research and Innovation Centre, Food Quality and Nutrition Department, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all’Adige, Italy
Center Agriculture Food Environment, University of Trento, San Michele all’Adige, Italy

Contact the author

Keywords

Oxidation, Reduction, Metabolomics, VSCs 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition.

Qualité des vins et Terroirs. Incidence du milieu naturel sur la composition aromatique des vins

The northern vineyards produce wines with a high aromatic richness. The wines of Alsace are appreciated for the diversity of their aromas, the typicality of which was for a long time judged mainly according to the grape variety of origin. Alsatian winegrowers have however widely sensed the importance of the environment of the vine on the quality of the wines. Efforts are made to try to harmonize in a reasoned way the interaction between the natural environment and the plant material with a view to developing the character of the grape variety through the fine expression of the terroir and making the quality and typicality even more inimitable. wines produced in Alsace.

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines.

Authenticating the geographical origin of wine using fluorescence spectroscopy and machine learning

Wine is a luxury product and a global beverage steeped in history and mystery. Over time, various regions have become renowned for the quality of wines they produce, which adds considerable value to the regions and the brands. On the whole, the international wine market is worth many hundreds of billions of dollars, which attracts unscrupulous operators intent on defrauding wine consumers.