terclim by ICS banner
IVES 9 IVES Conference Series 9 METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Abstract

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2. The aim of this study was therefore to progress in wines without added SO₂ specificities characterization, focusing on compounds involved in their particular aroma.

To identify these compounds, a sensory targeted approach using semi-preparative HPLC3 followed by GC-O and GC-MS characterization was applied. For that, the same wines than those used for previous sensory characterization were studied. These wines were produced in 2017 from same merlot grape batches, according to a standard winemaking process, with or without SO₂ addition. First of all, wine aroma extracts were fractionated by semi-preparative HPLC to identify fractions perceived differently between wines. After comparing the fractions of the wines with or without sulfites, three consecutive fractions have been selected for their olfactive difference between the wines. These fractions were then analyzed by GC-O and GC-MS. Methyl salicylate was identified as responsible for sensory differences observed between these fractions. This compound was quantified4 in a large set of commercial red wines. Methyl salicylate was present at higher concentrations in the wines without added SO₂ ranging from 6 to 105 µg/L whereas, in the wines with added SO₂, its concentration was below 10 µg/L. Sensory threshold of methyl salicylate was determined in red wines at 62.3 µg/L and one-quarter of the wines without sulfites studied, presented a concentration higher than this threshold.

Finally, methyl salicylate qualitative sensory impact was characterized in wines without added SO₂ by sensory profile determinations. This was done after a descriptor generation procedure and an adapted training on natural references associated to generated descriptors. This revealed that methyl salicylate was at the origin of wine without added SO₂ coolness and modified fruity aroma perception of these wines.

 

1. Pelonnier-Magimel, E., Mangiorou, P., Philippe, D., Revel, G. de, Jourdes, M., Marchal, A., Marchand, S., Pons, A., Riquier, L., Teissedre, P.-L., Thibon, C., Lytra, G., Tempère, S., & Barbe, J.-C. (2020). Sensory characterisation of Bordeaux red wines produced without added sulfites. OENO One, 54(4), Art. 4.
2. Pelonnier-Magimel, E., Windholtz, S., Pomarède, I. M., & Barbe, J.-C. (2020). Sensory characterisation of wines without added sulfites via specific and adapted sensory profile. OENO One, 54(4), Art. 4.
3. Pineau, B., Barbe, J.-C., Van Leeuwen, C., & Dubourdieu, D. (2009). Examples of perceptive interactions involved in specific “red-” and “black-berry” aromas in red wines. Journal of agricultural and food chemistry, 57(9), 3702-3708.
4. Poitou, X., Redon, P., Pons, A., Bruez, E., Delière, L., Marchal, A., Cholet, C., Geny-Denis, L., & Darriet, P. (2021). Methyl salicy-late, a grape and wine chemical marker and sensory contributor in wines elaborated from grapes affected or not by cryptogamic diseases. Food Chemistry, 360, 130120.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Edouard Pelonnier-Magimel1,2, Georgia Lytra1,2, Céline Franc1,2, Laura Farris1,2, Philippe Darriet1,2, Jean-Christophe Barbe1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France

Contact the author*

Keywords

Wines without added sulfites, Methyl salicylate, Sensory analysis, GC-O

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabilization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite.

MOVING FROM SULFITES TO BIOPROTECTION: WHICH IMPACT ON CHARDONNAY WINE?

Over the last few years, several tools have been developed to reduce the quantity of sulfites used during winemaking, including bioprotection. Although its effectiveness in preventing the development of spoilage microorganisms has been proven, few data are available on the impact of sulfite substitution by bioprotection on the final product. The objective of this study was therefore to characterize Chardonnay wines with the addition of sulfite or bioprotection in the pre-fermentation stage. The effects of both treatments on resulting matrices was evaluated at several scales: analysis of classical oenological parameters, antioxidant capacity, phenolic compounds, non-volatile metabolome and sensory profile.

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

ANTHOCYANINS EXTRACTION FROM GRAPE POMACE USING EUTECTIC SOLVENTS

Grape pomace is one of the main by-products generated after pressing in winemaking.Emerging methods, such as ultrasound-assisted extraction with eutectic mixtures, have great potential due to their low toxicity, and high biodegradability. Choline chloride (ChCl) was used as a hydrogen bond acceptor and its corresponding hydrogen bond donor (malic acid, citric acid, and glycerol: urea). Components were heated at 80 °C and stirred until a clear liquid was obtained. Distilled water was added (30 % v/v). A solid-liquid ratio of 1 g pomace per 10 ml of eutectic solvent was used.

ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF) (Lonvaud-Funel, 1999). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D (Lorentzen et al., 2019). Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B+C, and D, respectively, although B and C strains were also detected in wine (Campbell-Sills et al., 2015; Coton et al., 2017; Lorentzen et al., 2019;