terclim by ICS banner
IVES 9 IVES Conference Series 9 METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Abstract

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2. The aim of this study was therefore to progress in wines without added SO₂ specificities characterization, focusing on compounds involved in their particular aroma.

To identify these compounds, a sensory targeted approach using semi-preparative HPLC3 followed by GC-O and GC-MS characterization was applied. For that, the same wines than those used for previous sensory characterization were studied. These wines were produced in 2017 from same merlot grape batches, according to a standard winemaking process, with or without SO₂ addition. First of all, wine aroma extracts were fractionated by semi-preparative HPLC to identify fractions perceived differently between wines. After comparing the fractions of the wines with or without sulfites, three consecutive fractions have been selected for their olfactive difference between the wines. These fractions were then analyzed by GC-O and GC-MS. Methyl salicylate was identified as responsible for sensory differences observed between these fractions. This compound was quantified4 in a large set of commercial red wines. Methyl salicylate was present at higher concentrations in the wines without added SO₂ ranging from 6 to 105 µg/L whereas, in the wines with added SO₂, its concentration was below 10 µg/L. Sensory threshold of methyl salicylate was determined in red wines at 62.3 µg/L and one-quarter of the wines without sulfites studied, presented a concentration higher than this threshold.

Finally, methyl salicylate qualitative sensory impact was characterized in wines without added SO₂ by sensory profile determinations. This was done after a descriptor generation procedure and an adapted training on natural references associated to generated descriptors. This revealed that methyl salicylate was at the origin of wine without added SO₂ coolness and modified fruity aroma perception of these wines.

 

1. Pelonnier-Magimel, E., Mangiorou, P., Philippe, D., Revel, G. de, Jourdes, M., Marchal, A., Marchand, S., Pons, A., Riquier, L., Teissedre, P.-L., Thibon, C., Lytra, G., Tempère, S., & Barbe, J.-C. (2020). Sensory characterisation of Bordeaux red wines produced without added sulfites. OENO One, 54(4), Art. 4.
2. Pelonnier-Magimel, E., Windholtz, S., Pomarède, I. M., & Barbe, J.-C. (2020). Sensory characterisation of wines without added sulfites via specific and adapted sensory profile. OENO One, 54(4), Art. 4.
3. Pineau, B., Barbe, J.-C., Van Leeuwen, C., & Dubourdieu, D. (2009). Examples of perceptive interactions involved in specific “red-” and “black-berry” aromas in red wines. Journal of agricultural and food chemistry, 57(9), 3702-3708.
4. Poitou, X., Redon, P., Pons, A., Bruez, E., Delière, L., Marchal, A., Cholet, C., Geny-Denis, L., & Darriet, P. (2021). Methyl salicy-late, a grape and wine chemical marker and sensory contributor in wines elaborated from grapes affected or not by cryptogamic diseases. Food Chemistry, 360, 130120.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Edouard Pelonnier-Magimel1,2, Georgia Lytra1,2, Céline Franc1,2, Laura Farris1,2, Philippe Darriet1,2, Jean-Christophe Barbe1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France

Contact the author*

Keywords

Wines without added sulfites, Methyl salicylate, Sensory analysis, GC-O

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

Wine varietal aroma is the result of a mixture of compounds formed or liberated from specific grape-aroma precursors. Their liberation/formation from their specific precursors can occur spontaneously by acid catalyzed rearrangements or hydrolysis or by the action of the yeast enzymatic activities. The influence of yeast during fermentation on the production of these volatile compounds has been widely studied however, the effect of this influence during aging is not fully understood. In order to evaluate these processes several indirect strategies have been used to study aroma precursors although they are not useful to understand the chemistry of the process.

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown.

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification.

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.

MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

Yeast-derived aroma compounds are the result of different and complex biochemical pathways that mainly occur during alcoholic fermentation. Many of them are related -but not limited- to the availability of nutrients in the fermentation medium and linked to nitrogen metabolism and biomass produced. Besides, the metabolic phase of yeast also regulates the expression of many enzymes involved in the formation of aroma active compounds. The work investigates the overall effect of continuous supplementation of nutrients during alcoholic fermentation of a grape must on the volatile composition of wines.