terclim by ICS banner
IVES 9 IVES Conference Series 9 UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

Abstract

The gustatory balance of dry wines is centered on three flavors, sourness, bitterness and sweetness. Even if certain compounds were already identified as contributing to sweetness, some taste modifications remain largely unexplained1,2. Some empirical observations combined with sensory analyzes have shown that an increase of wine sweetness occurs during post-fermentation maceration³. This step is a key stage of red winemaking during which the juice is left in contact with the marc, that contains the solid parts of the grape (seeds, skins and sometimes stems). This work aimed to identify a new taste-active compound that contributes to this gain of sweetness. Recent developments have highlighted the interested of untargeted metabolomic analysis for oenology4,5. Using similar tools, an original approach has been developed here to discover new sweet molecules released during post-fermentation maceration. In this context, different samples were taken from eight Bordeaux wineries over three vintages. These samples, coming from a total of 240 vats, were collected at two distinct stages, giving rise to two modalities: at the end of alcoholic fermentation and just before running-off the vat, that is before and after post-fermentation maceration. The analyses were assayed using liquid chromatography–high resolution mass spectrometry (UHPLC-Q-Exactive Plus, Orbitrap analyzer). Data processing was carried out using the MzMine 2 software followed by a differential analysis and statistical study executed with the R software to obtain a list of ions showing a strong increase during maceration. The MS² spectral data, obtained by fragmentation of molecules, provided informa-tion for their identification. One of these ions was selected and considered for a targeted purification by various separative techniques (SPE, CPC and HPLC-preparative). Its structural elucidation by NMR allowed to identify this compound for the first time in wine. Furthermore, sensory analysis revealed its pronounced sweet taste. This study proposes new tools to investigate taste-active compounds in wine. More generally, the results bring new insights to understand the chemical origin of wine taste and open promising perspectives for practical applications.

 

1. Cretin, B., Waffo-Teguo, P., Dubourdieu, D., Marchal, A., 2019. Taste-guided isolation of sweet-tasting compounds from grape seeds, structural elucidation and identification in wines. Food Chemistry 272, 388–395.
2. Fayad, S., Le Scanff, M., Waffo-Teguo, P., Marchal, A., 2021. Understanding sweetness of dry wines: First evidence of astilbin isomers in red wines and quantitation in a one-century range of vintages. Food Chemistry 352, 129293.
3. Cretin, B., 2016. Recherches sur les déterminants moléculaires contribuant à l’équilibre gustatif des vins secs 340.
4. Arapitsas, P., Ugliano, M., Marangon, M., Piombino, P., Rolle, L., Gerbi, V., Versari, A., Mattivi, F., 2020. Use of Untargeted Liquid Chromatography–Mass Spectrometry Metabolome To Discriminate Italian Monovarietal Red Wines, Produced in Their Different Terroirs. Journal of Agricultural and Food Chemistry. 68, 13353–13366.
5. Gil, M., Reynes, C., Cazals, G., Enjalbal, C., Sabatier, R., Saucier, C., 2020. Discrimination of rosé wines using shotgun metabolomics with a genetic algorithm and MS ion intensity ratios. Scientific Reports. 10, 1170.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Marie Le Scanff1,2, Warren Albertin1,2, Laurence Marcourt3, Adriano Rutz3, Jean-Luc Wolfender3 and Axel Marchal1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3. Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland

Contact the author*

Keywords

Untargeted metabolomic analysis, Taste, Sweetness, Mass spectrometry

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PRODUCTION OF A FUNCTIONAL BEVERAGE FROM WINEMAKING BY-PRODUCTS: A NEW WAY OF VALORISATION

In the challenge of transforming waste into useful products that can be re-used in a circular economy perspective, winery by-products can be considered as a source of potentially bioactive molecules such as polyphenols. The wine industry generates each year 20 million tons of by-products. Kombucha fermentation is an ancestral process which allow to increase the biological properties of tea by the action of a microbial consortium formed by yeasts and bacteria called SCOBY. It belongs to the field of healthy food for which the interest of consumers is growing. The objective of this work was to propose a new functional beverage made from winemaking by-products fermented by a Kombucha SCOBY.

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4

EFFECTS OF DIFFERENT PRUNING TYPES ON CHARENTE UGNI BLANC GRAPE AND WINE QUALITY

Since the use of sodium arsenite was banned in 2001, Grapevine Trunk Diseases (GTDs) have become even more widespread increasing (1).To avoid pathogen entry, pruning, an age-old practice, is increa- singly coming to the fore. As the vine is a liana (2), any excessive woody proliferation has to be stopped. This can preserve grapevine life, provided it does not damage the diaphragm.

CHARACTERISTIC EXTRACTION OF THE PHENOL COMPOUNDS IN KOSHU (VITIS VINIFERA CV.) WINE DURING THE MACERATION

Koshu is one of the indigenous grape variety that has been grown in Japan for more than one thousand years. Recent research showed that it has 70% of Vitis vinifera genes. In 2010, the Koshu variety was included in ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine’ and has further fueled its popularity in Japan. It is the most cultivated variety for winemaking in Japan.
Koshu berries have light purple skins. The variety is mainly used to produce white wines such as an aromatic wine and a wine produced by sur lie method although various styles are produced.

CHARACTERIZATION OF ENOLOGICAL OAK TANNIN EXTRACTS BY MULTI-ANALYTICAL METHODS APPROACH

Oak tannin extracts are commonly used to improve wine properties. The main polyphenols found in oak wood extracts are ellagitannins¹ that release ellagic acid upon hydrolysis and comprise numerous structures². Moreover, oak tannin extracts contain other compounds giving a complex mixture. Consequently, the official OIV method based on gravimetric analysis of the tannin fraction adsorbed on polyvinylpolypyrrolidone is not sufficient to describe their composition and highlight their chemical diversity.