terclim by ICS banner
IVES 9 IVES Conference Series 9 UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

Abstract

The gustatory balance of dry wines is centered on three flavors, sourness, bitterness and sweetness. Even if certain compounds were already identified as contributing to sweetness, some taste modifications remain largely unexplained1,2. Some empirical observations combined with sensory analyzes have shown that an increase of wine sweetness occurs during post-fermentation maceration³. This step is a key stage of red winemaking during which the juice is left in contact with the marc, that contains the solid parts of the grape (seeds, skins and sometimes stems). This work aimed to identify a new taste-active compound that contributes to this gain of sweetness. Recent developments have highlighted the interested of untargeted metabolomic analysis for oenology4,5. Using similar tools, an original approach has been developed here to discover new sweet molecules released during post-fermentation maceration. In this context, different samples were taken from eight Bordeaux wineries over three vintages. These samples, coming from a total of 240 vats, were collected at two distinct stages, giving rise to two modalities: at the end of alcoholic fermentation and just before running-off the vat, that is before and after post-fermentation maceration. The analyses were assayed using liquid chromatography–high resolution mass spectrometry (UHPLC-Q-Exactive Plus, Orbitrap analyzer). Data processing was carried out using the MzMine 2 software followed by a differential analysis and statistical study executed with the R software to obtain a list of ions showing a strong increase during maceration. The MS² spectral data, obtained by fragmentation of molecules, provided informa-tion for their identification. One of these ions was selected and considered for a targeted purification by various separative techniques (SPE, CPC and HPLC-preparative). Its structural elucidation by NMR allowed to identify this compound for the first time in wine. Furthermore, sensory analysis revealed its pronounced sweet taste. This study proposes new tools to investigate taste-active compounds in wine. More generally, the results bring new insights to understand the chemical origin of wine taste and open promising perspectives for practical applications.

 

1. Cretin, B., Waffo-Teguo, P., Dubourdieu, D., Marchal, A., 2019. Taste-guided isolation of sweet-tasting compounds from grape seeds, structural elucidation and identification in wines. Food Chemistry 272, 388–395.
2. Fayad, S., Le Scanff, M., Waffo-Teguo, P., Marchal, A., 2021. Understanding sweetness of dry wines: First evidence of astilbin isomers in red wines and quantitation in a one-century range of vintages. Food Chemistry 352, 129293.
3. Cretin, B., 2016. Recherches sur les déterminants moléculaires contribuant à l’équilibre gustatif des vins secs 340.
4. Arapitsas, P., Ugliano, M., Marangon, M., Piombino, P., Rolle, L., Gerbi, V., Versari, A., Mattivi, F., 2020. Use of Untargeted Liquid Chromatography–Mass Spectrometry Metabolome To Discriminate Italian Monovarietal Red Wines, Produced in Their Different Terroirs. Journal of Agricultural and Food Chemistry. 68, 13353–13366.
5. Gil, M., Reynes, C., Cazals, G., Enjalbal, C., Sabatier, R., Saucier, C., 2020. Discrimination of rosé wines using shotgun metabolomics with a genetic algorithm and MS ion intensity ratios. Scientific Reports. 10, 1170.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Marie Le Scanff1,2, Warren Albertin1,2, Laurence Marcourt3, Adriano Rutz3, Jean-Luc Wolfender3 and Axel Marchal1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3. Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland

Contact the author*

Keywords

Untargeted metabolomic analysis, Taste, Sweetness, Mass spectrometry

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet.

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown.

IMPACT OF THE WINES’ QUALITY ON THE WINE DISTILLATES’ ORGANOLEPTIC PROFILE

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest (1 y 2) being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (3) and varies each year of harvest depending on the weather conditions (4).

S. CEREVISIAE AND O. ŒNI BIOFILMS FOR CONTINUOUS ALCOHOLIC AND MALOLACTIC FERMENTATIONS IN WINEMAKING

Biofilms are sessile microbial communities whose lifestyle confers specific properties. They can be defined as a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to a surface and considered as a method of immobilisation. Immobilised microorganisms offer many advantages for industrial processes in the production of alcoholic beverages and specially increasing cell densities for a better management of fermentation rates.