terclim by ICS banner
IVES 9 IVES Conference Series 9 DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Abstract

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

Yeast cellular autolysis facilitates the diffusion of proteins and peptides into the wine. Associated with protease activity, amino acids can be released during ageing. The organic nitrogen content of wines and lees post-fermentation is not yet fully understood. This study explored the quantities of free amino acids, potential amino acids, and protease activity in champagne still wines and their corresponding lees. To achieve this analysis, a new quantification method to detect protease activity was developed using fluorescein isothiocyanate bound to a casein substrate.

In addition, the current method used to quantify potential amino acids after acid hydrolysis was optimized and associated to the previously published HPLC/FLD method for quantifying free amino acids(2). The methods were also adapted for quantifying lees. This analytical toolbox allows the observation of nitrogen compound kinetics over time, and was subsequently applied to sixteen young wines and their corresponding lees. The results of this study highlight a high variability in amino acid content between wines and lees. This suggests huge differences between amino acids levels in wine and in lees. No direct correlation was observed between lees quantity and the concentration of free and potential amino acids, indicating the mechanism is more complex. After 5 months of wine ageing with lees contact, the wines with lower levels of amino acids showed higher protease activity. That result encourages us to continue studying yeast lees and their variable capacities to release amino acids into wine over time.

 

1. Le Menn N, Marchand S, De Revel G, Demarville D, Laborde D, Marchal R. N,S,O-Heterocycles in Aged Champagne Reserve Wines and Correlation with Free Amino Acid Concentrations. J Agric Food Chem. 2017;65(11):2345-56.
2. Pripis-Nicolau L, De Revel G, Marchand S, Beloqui AA, Bertrand A. Automated HPLC method for the measurement of free amino acids including cysteine in musts and wines; first applications. J Sci Food Agric. 2001;81(8):731-8.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Nicolas Le Menn¹, Sera Goto1,2, Stéphanie Marchand¹

1. Université de Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France
2. Champagne Veuve Clicquot, 13 rue Albert Thomas, 51100 Reims, France

Contact the author*

Keywords

Nitrogen, relesable nitrogen, lees, ageing

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

RED WINE AGING WITHOUT SO₂: WHAT IMPACT ON MICROBIAL COMMUNITY?

Nowadays, the use of food preservatives is controversial, SO2 being no exception. Microbial communities have been particularly studied during the prefermentary and fermentation stages in a context of without added SO2. However, microbial risks associated with SO2 reduction or absence, particularly during the wine aging process, have so far been little studied. The microbiological control of wine aging is a key issue for winemakers wishing to produce wines without added SO2. The aim of the present study is to evaluate the impact of different wine aging strategies according to the addition or not of SO2 on the microbiological population levels and diversity.

S. CEREVISIAE AND O. ŒNI BIOFILMS FOR CONTINUOUS ALCOHOLIC AND MALOLACTIC FERMENTATIONS IN WINEMAKING

Biofilms are sessile microbial communities whose lifestyle confers specific properties. They can be defined as a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to a surface and considered as a method of immobilisation. Immobilised microorganisms offer many advantages for industrial processes in the production of alcoholic beverages and specially increasing cell densities for a better management of fermentation rates.

HYDROXYTYROSOL PRODUCTION BY DIFFERENT YEAST STRAINS: SACCHAROMYCES AND NON-SACCHAROMYCES AND THE RELATION WITH THE NITROGEN CONSUMPTION

Hydroxytyrosol (HT) is a phenolic compound with extensive bioactive properties. It is present in olives, olive oil and wines. Its occurrence in wines is partly due to yeast synthetise tyrosol from tyrosine by the Ehrlich pathway, which is subsequently hydroxylated to .
The aim of the present work is to study how different yeast strains can influence in the HT production and, how the different nitrogen consumption of each strain can interfere the production of bioactive compounds.

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

WHICH IMPACT FOR PROANTHOCYANIDIC TANNINS ON RED WINE FRUITY AROMA? SENSORY AND PHYSICOCHEMICAL APPROACHES

Previous research on the fruity character of red wines highlighted the role of esters. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall aroma of wine, contributing to a modulation of its global aromatic expression. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.
Sensory analysis of numerous aromatic reconstitutions, including triangular tests, detection thresholds, and sensory profiles, were conducted in order to evaluate the sensory impact of tannins on red wine esters perception.