OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Q-NMR measurements: quantitative analysis of wine composition applied to Bordeaux red wines authenticity control

Q-NMR measurements: quantitative analysis of wine composition applied to Bordeaux red wines authenticity control

Abstract

Traceability of wine is today a consumer demand and a scientific challenge. The methods of analysis must be able to control three fundamental parameters: the geographical origin, the grape varieties, and the vintage. With these focus, the CIVB supports the creation of a VRAI platform (Wine-Research-Authenticity-Identity) within the ISVV (Institute of Vine and Wine Sciences). This platform aims to develop analytical tools to guarantee the origin of a wine. Quantitative Nuclear Magnetic Resonance (qNMR) may be a great tool to help authenticate wines. The acquisition of a large number of wine parameters requires a small volume (a few hundred microliters) and the analysis is performed in a few minutes. This innovative analytical technique can therefore be useful to characterize wines quality and authenticity particularly in the context of priceless wine. 

A NMR-based metabolomics method was developed to semiautomatically quantify many wine components [1]. An original approach based on similarity score (s-score) was developed for wine comparison. Using this approach, a comparative evaluation of the results obtained for three sets of authentic high-valued wines and suspect wines was studied with two methodologies: (i) usual wine analysis, based on the use of multiple techniques, which is the traditional way of analysis for wine authentication and (ii) q-NMR profiling [2]. In order to consider a global aging uncertainty, samples from the same batch from old vintages were analyzed to estimate aging impact on wine composition. Results showed that q-NMR can detect cases of fraud by comparison with the original wine provided by the estate, according to conclusions of official methods. 

More, a database of commercial French wines was built with q-NMR data to examine the specific Bordeaux red wines fingerprinting. Several statistical analyses were performed to classify wines according to their geographical origin, vintage. Results revealed a singular imprint of Bordeaux wines in comparison with other French wines, with classification rates ranging from 71 % to 100 %. These analysies highlighted several specific metabolites of Bordeaux red wines and showed the influence of terroir in the discrimination. Also, Bordeaux subdivisions were investigated, and effects of wines evolution during bottle aging and vintage were pointed out. These studies provide a global and practical description of the potential of q-NMR for wine authentication. 

[1] Gougeon, L., Da Costa, G., Le Mao, I., Ma, W., Teissedre, P. L., Guyon, F., & Richard, T. (2018). Wine Analysis and Authenticity Using 1H-NMR Metabolomics Data: Application to Chinese Wines. Food Analytical Methods, 11(12), 3425-3434. 
[2] Gougeon, L., Da Costa, G., Richard, T., & Guyon, F. (2019). Wine Authenticity by Quantitative 1H NMR Versus Multitechnique Analysis: a Case Study. Food Analytical Methods, doi: 10.1007/s12161-12018-01425-z.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Tristan Richard, Louis Gougeon, Grégory Da Costa, François Guyon

1.Université de Bordeaux, OEnologie EA 4577, USC 1366 INRA, INP, Molécules d’Intérêt Biologique (Gesvab), ISVV, 210 chemin de Leysotte, 33882 Villenave d’Ornon, France
2.Service Commun des Laboratoires, 3 avenue du Dr. Albert Schweitzer, 33600 Pessac, France

Contact the author

Keywords

wine, authenticity, qNMR, multivariate statistics 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Phenolic acid characterization in new varieties descended from Monastrell.

Phenolic acids are phytochemicals that are expansively distributed in daily food intake. Phenolic acids are involved in various physiological activities, such as nutrient uptake, enzyme activity, protein synthesis, photosynthesis, and cytoskeleton structure in seeds, leaves, roots, and stems. Also exhibit antibacterial, antiviral, anticarcinogenic, anti-inflammatory, and vasodilatory activities due to their antioxidant property.

Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Volatile phenols from wildfire smoke are absorbed by wine grapes, resulting in undesirable smoky and ashy sensory attributes in the affected wine.[1] Unfortunately the severity of wildfires is increasing, particularly when grapes are ripening on the vine. The unwanted flavors of the wine prompted a need for solutions to prevent the uptake of smoke compounds into wine grapes. Films using cellulose nanofibers as the coating forming matrix were developed as an innovative means to prevent smoke phenols from entering Pinot noir grapes. Different film formulations were tested by incorporating low methoxy pectin or chitosan.

Quantitative assessment of must composition using benchtop NMR spectroscopy: comparative evaluation with FTIR and validation by reference

The foundation of wine production lies in the use of high-quality grapes. To produce wines that meet the highest standards, a fast and reliable analytical assessment of grape quality is essential. Many wineries currently employ Fourier-Transform Middle-Infrared Spectroscopy (FTIR) for this purpose.

Partitioning of seasonal above‐ground biomass of four vineyard-grown varieties: development of a modelling framework to infer temperature-rate response functions

Aims: Forecasting the biomass allocation among source and sinks organs is crucial to better understand how grapevines control the distribution of acquired resources and has a great meaning in term of making decisions about agricultural practices in vineyards. Modelling plant growth and development is one of prediction approaches that play this role when it concerns growth rates in response to variation in environmental conditions

What are the optimal ranges and thresholds for berry solar radiation for flavonoid biosynthesis?

In wine grape production, canopy management practices are applied to control the source-sink balance and improve the cluster microclimate to enhance berry composition. The aim of this study was to identify the optimal ranges of berry solar radiation exposure (exposure) for upregulation of flavonoid biosynthesis and thresholds for their degradation, to evaluate how canopy management practices such as leaf removal, shoot thinning, and a combination of both affect the grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) yield components, berry composition, and flavonoid profile under context of climate change. First experiment assessed changes in the grape flavonoid content driven by four degrees of exposure. In the second experiment, individual grape berries subjected to different exposures were collected from two cultivars (Cabernet Sauvignon and Petit Verdot). The third experiment consisted of an experiment with three canopy management treatments (i) LR (removal of 5 to 6 basal leaves), (ii) ST (thinned to 24 shoots per vine), and (iii) LRST (a combination of LR and ST) and an untreated control (UNT). Berry composition, flavonoid content and profiles, and 3-isobutyl 2-methoxypyrazine were monitored during berry ripening. Although increasing canopy porosity through canopy management practices can be helpful for other purposes, this may not be the case of flavonoid compounds when a certain proportion of kaempferol was achieved. Our results revealed different sensitivities to degradation within the flavonoid groups, flavonols being the only monitored group that was upregulated by solar radiation. Within different canopy management practices, the main effects were due to the ST. Under environmental conditions given in this trial, ST and LRST hastened fruit maturity; however, a clear improvement of the flavonoid compounds (i.e., greater anthocyanin) was not observed at harvest. Methoxypyrazine berry content decreased with canopy management practices studied. Although some berry traits were improved (i.e. 2.5° Brix increase in berry total soluble solids) due to canopy management practices (ST), this resulted in a four-fold increase in labor operations cost, two-fold decrease in yield with a 10-fold increase in anthocyanin production cost per hectare that should be assessed together as the climate continues to get hot.