OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Q-NMR measurements: quantitative analysis of wine composition applied to Bordeaux red wines authenticity control

Q-NMR measurements: quantitative analysis of wine composition applied to Bordeaux red wines authenticity control

Abstract

Traceability of wine is today a consumer demand and a scientific challenge. The methods of analysis must be able to control three fundamental parameters: the geographical origin, the grape varieties, and the vintage. With these focus, the CIVB supports the creation of a VRAI platform (Wine-Research-Authenticity-Identity) within the ISVV (Institute of Vine and Wine Sciences). This platform aims to develop analytical tools to guarantee the origin of a wine. Quantitative Nuclear Magnetic Resonance (qNMR) may be a great tool to help authenticate wines. The acquisition of a large number of wine parameters requires a small volume (a few hundred microliters) and the analysis is performed in a few minutes. This innovative analytical technique can therefore be useful to characterize wines quality and authenticity particularly in the context of priceless wine. 

A NMR-based metabolomics method was developed to semiautomatically quantify many wine components [1]. An original approach based on similarity score (s-score) was developed for wine comparison. Using this approach, a comparative evaluation of the results obtained for three sets of authentic high-valued wines and suspect wines was studied with two methodologies: (i) usual wine analysis, based on the use of multiple techniques, which is the traditional way of analysis for wine authentication and (ii) q-NMR profiling [2]. In order to consider a global aging uncertainty, samples from the same batch from old vintages were analyzed to estimate aging impact on wine composition. Results showed that q-NMR can detect cases of fraud by comparison with the original wine provided by the estate, according to conclusions of official methods. 

More, a database of commercial French wines was built with q-NMR data to examine the specific Bordeaux red wines fingerprinting. Several statistical analyses were performed to classify wines according to their geographical origin, vintage. Results revealed a singular imprint of Bordeaux wines in comparison with other French wines, with classification rates ranging from 71 % to 100 %. These analysies highlighted several specific metabolites of Bordeaux red wines and showed the influence of terroir in the discrimination. Also, Bordeaux subdivisions were investigated, and effects of wines evolution during bottle aging and vintage were pointed out. These studies provide a global and practical description of the potential of q-NMR for wine authentication. 

[1] Gougeon, L., Da Costa, G., Le Mao, I., Ma, W., Teissedre, P. L., Guyon, F., & Richard, T. (2018). Wine Analysis and Authenticity Using 1H-NMR Metabolomics Data: Application to Chinese Wines. Food Analytical Methods, 11(12), 3425-3434. 
[2] Gougeon, L., Da Costa, G., Richard, T., & Guyon, F. (2019). Wine Authenticity by Quantitative 1H NMR Versus Multitechnique Analysis: a Case Study. Food Analytical Methods, doi: 10.1007/s12161-12018-01425-z.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Tristan Richard, Louis Gougeon, Grégory Da Costa, François Guyon

1.Université de Bordeaux, OEnologie EA 4577, USC 1366 INRA, INP, Molécules d’Intérêt Biologique (Gesvab), ISVV, 210 chemin de Leysotte, 33882 Villenave d’Ornon, France
2.Service Commun des Laboratoires, 3 avenue du Dr. Albert Schweitzer, 33600 Pessac, France

Contact the author

Keywords

wine, authenticity, qNMR, multivariate statistics 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Mobile device to induce heat-stress on grapevine berries

Studying heat stress response of grapevine berries in the field often relies on weather conditions during the growing season. We constructed a mobile heating device, able to induce controlled heat stress on grapes in vineyards. The heater consisted of six 150 W infrared lamps mounted in a profile frame. Heating power of the lamps could be controlled individually by a control unit consisting of a single board computer and six temperature sensors to reach a pre-set temperature. The heat energy applied to individual berries within a cluster decreases by the squared distance to the heat source, enabling the establishment of temperature profiles within individual clusters. These profiles can be measured by infrared thermography once a steady state has been reached. Radiant flux density received by a berry depending on the distance was calculated based on a view factor and measured lamp surface temperature and resulted to 665 Wm-2 at 7cm. Infrared thermography of the fruit surface was in good agreement with measurements conducted with a thermocouple inserted at epidermis level. In combination with infrared thermography, the presented device offers possibilities for a wide range of applications like phenotyping for heat tolerance in the field to proceed in the understanding of the complex response of plants to heat stress. Sunburn necrosis symptoms were artificially induced with the aid of the device for cv. Bacchus and cv. Sylvaner in the 2020 and 2021 growing season. Threshold temperatures for sunburn induction (LT5030min) were derived from temperature data of single berries and visual sunburn assessment, applying logistic regression. A comparison of threshold temperatures for the occurrence of sunburn necrosis confirmed the higher susceptibility of cv. Bacchus. The lower susceptibility of cv. Sylvaner did not seem to be related to its phenolic composition, rendering a thermoprotective role of berry phenolic compounds unlikely.

Impact of grapevine rootstock genotypes on nitrogen status of the scion and phenolic composition in Pinot noir berries and wine

Context and purpose of the study. Nitrogen (N) limitation enhances the production of phenolic compounds in grapes due to the downregulation of the flavonoid biosynthesis pathway.

The sea breeze: a significant climatic factor for viticultural zoning in coastal wine growing areas

La brise de mer est un facteur climatique important pour le zonage viticole des régions viticoles côtières car l’accélération du vent qui lui est associée l’après midi ainsi que l’augmentation de l’humidité relative et la réduction de la température concomitantes sont significatives pour le fonctionnement de la vigne et, par conséquent, la qualité du raisin et du vin

Towards a relationship between institutional clonal selection, mass selection and private clonal selection of grapevine cultivars

Each grape cultivar is composed of a population of individuals that are genetically different. Clonal selection has allowed the purification and improvement of the global quality

Litchi tomato as a fumigation alternative in Washington state wine grape vineyards

The northern root-knot nematode (Meloidogyne hapla) is one of the most prevalent plant-parasitic nematodes affecting Washington State Vitis vinifera vineyards. This nematode induces small galls on roots, restricting water and nutrient uptake. In new vineyards this can impede establishment. In existing vineyards, it can exacerbate decline in chronically stressed vines. While preplant fumigation is a common strategy for M. hapla management, its efficacy is temporary and relies on broad-spectrum chemicals that undergo frequent regulatory scrutiny. The trap crop litchi tomato (Solanum sisymbriifolium) showed promise in reducing plant-parasitic nematode densities in potato. This prompted field greenhouse experiments to evaluate its potential to reduce M. hapla in V. vinifera.