OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Q-NMR measurements: quantitative analysis of wine composition applied to Bordeaux red wines authenticity control

Q-NMR measurements: quantitative analysis of wine composition applied to Bordeaux red wines authenticity control

Abstract

Traceability of wine is today a consumer demand and a scientific challenge. The methods of analysis must be able to control three fundamental parameters: the geographical origin, the grape varieties, and the vintage. With these focus, the CIVB supports the creation of a VRAI platform (Wine-Research-Authenticity-Identity) within the ISVV (Institute of Vine and Wine Sciences). This platform aims to develop analytical tools to guarantee the origin of a wine. Quantitative Nuclear Magnetic Resonance (qNMR) may be a great tool to help authenticate wines. The acquisition of a large number of wine parameters requires a small volume (a few hundred microliters) and the analysis is performed in a few minutes. This innovative analytical technique can therefore be useful to characterize wines quality and authenticity particularly in the context of priceless wine. 

A NMR-based metabolomics method was developed to semiautomatically quantify many wine components [1]. An original approach based on similarity score (s-score) was developed for wine comparison. Using this approach, a comparative evaluation of the results obtained for three sets of authentic high-valued wines and suspect wines was studied with two methodologies: (i) usual wine analysis, based on the use of multiple techniques, which is the traditional way of analysis for wine authentication and (ii) q-NMR profiling [2]. In order to consider a global aging uncertainty, samples from the same batch from old vintages were analyzed to estimate aging impact on wine composition. Results showed that q-NMR can detect cases of fraud by comparison with the original wine provided by the estate, according to conclusions of official methods. 

More, a database of commercial French wines was built with q-NMR data to examine the specific Bordeaux red wines fingerprinting. Several statistical analyses were performed to classify wines according to their geographical origin, vintage. Results revealed a singular imprint of Bordeaux wines in comparison with other French wines, with classification rates ranging from 71 % to 100 %. These analysies highlighted several specific metabolites of Bordeaux red wines and showed the influence of terroir in the discrimination. Also, Bordeaux subdivisions were investigated, and effects of wines evolution during bottle aging and vintage were pointed out. These studies provide a global and practical description of the potential of q-NMR for wine authentication. 

[1] Gougeon, L., Da Costa, G., Le Mao, I., Ma, W., Teissedre, P. L., Guyon, F., & Richard, T. (2018). Wine Analysis and Authenticity Using 1H-NMR Metabolomics Data: Application to Chinese Wines. Food Analytical Methods, 11(12), 3425-3434. 
[2] Gougeon, L., Da Costa, G., Richard, T., & Guyon, F. (2019). Wine Authenticity by Quantitative 1H NMR Versus Multitechnique Analysis: a Case Study. Food Analytical Methods, doi: 10.1007/s12161-12018-01425-z.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Tristan Richard, Louis Gougeon, Grégory Da Costa, François Guyon

1.Université de Bordeaux, OEnologie EA 4577, USC 1366 INRA, INP, Molécules d’Intérêt Biologique (Gesvab), ISVV, 210 chemin de Leysotte, 33882 Villenave d’Ornon, France
2.Service Commun des Laboratoires, 3 avenue du Dr. Albert Schweitzer, 33600 Pessac, France

Contact the author

Keywords

wine, authenticity, qNMR, multivariate statistics 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Effects of urea and nano-urea foliar treatments on the aromatic profile of Monastrell wines

Foliar application of urea has proven to be an effective method for increasing the amino acid content in grapes, especially when the vineyard has additional nitrogen needs. These treatments can prevent problems of stucking fermentation during winemaking.

A fast and sensitive method for total tannin determination in wine based on the substoichiometric quenching of silicon-rhodamine conjugates

Tannins are chemically diverse polyphenols contributing to important sensory attributes of food and beverages. In wine, their structure and quantity depend on several factors, such as the grape variety, climate, soil, viticultural and enological practices and the wine-aging process.

Understanding the physiological responses of Sauvignon blanc vines to sequential extreme weather events: implications for vineyard management in a changing climate

Climate plays a predominant role in vines’ growth and productivity and several environmental variables are already known to pose challenges to grapevine production and the horticultural industry as a whole. In this context, a number of extreme weather events already occurring and expected to occur in the next decades even more frequently and with higher magnitude results from current climate change scenario. The aim of this study was to examine the physiological responses of roots, leaves, and berries of Vitis vinifera cv. Sauvignon blanc to consecutive and combined stressors simulated in a semi-controlled environment.

Impact of dried stems in winemaking on Veneto Passito wines

The use of stems during fermentation is generally avoided due to the herbaceous off-odors they can impart to the wine. [1].

The soil application of a plant-derived protein hydrolysate speeds up selectively the ripening-specific processes in table grape

Grapevine is one of the most extensively cultivated fruit crops, playing a crucial role in the economies of many grape-growing regions around the world.