OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Q-NMR measurements: quantitative analysis of wine composition applied to Bordeaux red wines authenticity control

Q-NMR measurements: quantitative analysis of wine composition applied to Bordeaux red wines authenticity control

Abstract

Traceability of wine is today a consumer demand and a scientific challenge. The methods of analysis must be able to control three fundamental parameters: the geographical origin, the grape varieties, and the vintage. With these focus, the CIVB supports the creation of a VRAI platform (Wine-Research-Authenticity-Identity) within the ISVV (Institute of Vine and Wine Sciences). This platform aims to develop analytical tools to guarantee the origin of a wine. Quantitative Nuclear Magnetic Resonance (qNMR) may be a great tool to help authenticate wines. The acquisition of a large number of wine parameters requires a small volume (a few hundred microliters) and the analysis is performed in a few minutes. This innovative analytical technique can therefore be useful to characterize wines quality and authenticity particularly in the context of priceless wine. 

A NMR-based metabolomics method was developed to semiautomatically quantify many wine components [1]. An original approach based on similarity score (s-score) was developed for wine comparison. Using this approach, a comparative evaluation of the results obtained for three sets of authentic high-valued wines and suspect wines was studied with two methodologies: (i) usual wine analysis, based on the use of multiple techniques, which is the traditional way of analysis for wine authentication and (ii) q-NMR profiling [2]. In order to consider a global aging uncertainty, samples from the same batch from old vintages were analyzed to estimate aging impact on wine composition. Results showed that q-NMR can detect cases of fraud by comparison with the original wine provided by the estate, according to conclusions of official methods. 

More, a database of commercial French wines was built with q-NMR data to examine the specific Bordeaux red wines fingerprinting. Several statistical analyses were performed to classify wines according to their geographical origin, vintage. Results revealed a singular imprint of Bordeaux wines in comparison with other French wines, with classification rates ranging from 71 % to 100 %. These analysies highlighted several specific metabolites of Bordeaux red wines and showed the influence of terroir in the discrimination. Also, Bordeaux subdivisions were investigated, and effects of wines evolution during bottle aging and vintage were pointed out. These studies provide a global and practical description of the potential of q-NMR for wine authentication. 

[1] Gougeon, L., Da Costa, G., Le Mao, I., Ma, W., Teissedre, P. L., Guyon, F., & Richard, T. (2018). Wine Analysis and Authenticity Using 1H-NMR Metabolomics Data: Application to Chinese Wines. Food Analytical Methods, 11(12), 3425-3434. 
[2] Gougeon, L., Da Costa, G., Richard, T., & Guyon, F. (2019). Wine Authenticity by Quantitative 1H NMR Versus Multitechnique Analysis: a Case Study. Food Analytical Methods, doi: 10.1007/s12161-12018-01425-z.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Tristan Richard, Louis Gougeon, Grégory Da Costa, François Guyon

1.Université de Bordeaux, OEnologie EA 4577, USC 1366 INRA, INP, Molécules d’Intérêt Biologique (Gesvab), ISVV, 210 chemin de Leysotte, 33882 Villenave d’Ornon, France
2.Service Commun des Laboratoires, 3 avenue du Dr. Albert Schweitzer, 33600 Pessac, France

Contact the author

Keywords

wine, authenticity, qNMR, multivariate statistics 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Transforming winemaking waste: grape pomace as a sustainable source of bioactive compounds

Grapevines (Vitis vinifera L.) are plants of great economic importance, with over 80% of grape production dedicated to wine production, yielding more than 258 million hectoliters annually [1].

Assessing and mapping vineyard water status variability using a miniaturized nir spectrophotometer from a moving vehicle

In the actual scenario of climate change, optimization of water usage is becoming critical in sustainable viticulture. Most of the current approaches to assess grapevine water status and drive irrigation scheduling are either destructive, time and labour consuming and monitor a small, limited number of plants. This work presents a novel methodology using a contactless, miniaturized, low-cost NIR spectrometer to monitor the vineyard water status variability from a moving vehicle, to provide reliable information towards precision irrigation.

Can wine competition awarded points be correlated with wine chromatic and aromatic composition?

The quality of wine is difficult to define. This is most certainly accredited to everyone´s different perception of quality. Some of the indicators of high-quality wines are complexity, balance, color and intensity. Color is one of the most crucial attributes of quality, not only for the obvious implications for their perception but also because they are indicators of other aspects related to its aroma and taste. Phenolic compounds are the main responsible for wine color, being anthocyanin and tannins the most determinant compounds in red wines. In addition to color, wine aroma is another important attribute linked with quality and consumer preferences.

Influence of deficit irrigation on grapevine cv. “Touriga Nacional” in Douro region: A metabolomic approach

Aim: This study aimed to evaluate whether irrigation of Touriga Nacional in Douro Demarcated Region (DDR) can partly mitigate the negative impacts of ongoing climate change on grapevine yield and quality and its impact on plant metabolism.

Exploring the influence of terroir on the sensorial and aroma profiles of wines – An application to red wines from AOC Corbières

The aromatic profile of a wine is the result of volatile molecules present in grapes (varietal or primary aromas) and those produced during the winemaking process of fermentation (secondary aromas) and during wine aging (tertiary aromas).