OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Molecular characterization of wines nucleophilic potential by ultra-performance liquid chromatography high resolution mass spectrometry

Molecular characterization of wines nucleophilic potential by ultra-performance liquid chromatography high resolution mass spectrometry

Abstract

The knowledge about the molecular fraction associated to white wines oxidative stability is still poorly understood. However, the role of S- N- congaing compounds, like glutathione (GSH) and other peptides, as a source of reductant in many oxidation reactions protecting against heavy metals toxicity, or lipids and polyphenols oxidation as ROS-scavenger is today very well established. GSH is also reported being an important antioxidant, reacting as nucleophile substance that conjugates straightforwardly with reactive electrophiles resulting in foods and beverages chemical oxidative stability. It has been shown that, GSH efficiency against wines sensory oxidative stability is related to wines antioxidant metabolome consisting of N- and S- containing compounds like amino acids, aromatic compounds and peptides. These compounds present a strong nucleophilic character and their reactivity with wines electrophiles such as oxidized polyphenols, suggests the formation of stable adducts presenting lower oxidative potential. We consider that the knowledge behind the chemical composition of wines antioxidant metabolome is a key factor to estimate wines aging potential. 

In that respect, the present study introduces an original determination of the pool of nucleophilic compounds that can react with quinones in wine acidic conditions. One step derivatization of nucleophiles has been realized in wines with no pH adjustment by using 4‑methyl‑1,2‑benzoquinone (Q) as a nucleophilic probe. LC‑MS‑QToF analysis of 92 white followed by Multivariate analysis (PLS‑DA) and Wilcoxon test allowed to isolate up to 141 putative nucleophilic compounds. Only 20 of these compounds were detected without derivatization, showing an increase in detection level by quinone trapping, especially for thiols. Moreover, annotation using online database (Oligonet, Metlin and KEGG) as well as elementary formula determined by isotopic profile and MS² analysis allowed to show an important proportion of amino acids and peptides and to identify 4 compounds (GSH, Cys, homocysteine and Pro). The majority of the putative peptides can contain amino acids that are known to have antioxidant properties (Val, Leu, Ile, Pro, Trp, Cys and Met). 

 

These results show that derivatization of wines using Q allows to enhance thiol detection levels and to determine a pool of untargeted nucleophilic compounds that can be part of wines antioxidant metabolome

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Remy Romanet, Florian Bahut, Maria Nikolantonaki, Regis Gougeon

Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin, Jules Guyot, 21000 Dijon, France

Contact the author

Keywords

LC-QToF-MS, Nucleophilic compounds, Untargeted analysis, White wines oxidative stability 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Do high temperature extremes impact berry tannin composition?

Flavonoids, including flavonols, anthocyanins, and tannins, are important contributors to grape and wine quality, and their biosynthesis is strongly influenced by bunch microclimate.

Wine yeast species show strong inter- and intra-specific variability in their sensitivity to uv-c radiation

While the trend in winemaking is toward reducing the inputs and especially sulphites, the development of While the trend in winemaking is toward reducing the inputs

GrapeBreed4IPM: A horizon Europe project for sustainable viticulture through multi-actor breeding and innovation

Biodiversity loss and ecosystem degradation are among the greatest challenges of our time, and agriculture’s use of pesticides is a major driver.

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.

Bees, climate changes, and “environmental sustainability 4.1c” in viticulture and the territory for a new global multiproductive “biometaethical district 4.1c”

The use of bees as pollinators in vine varieties with physiologically female flowers (Picolit, Bicane, Ceresa, Moscato rosa, etc.) (Cargnello, 1983) and as bio-indicators for biodiversity and environmental sustainability is well-known. Furthermore, there are interests in: 1-a. Making the viticulture of Belluno (Province of Veneto in North-eastern Italy, which is also famous for the Dolomites -a UNESCO World Heritage-) regain the socioeconomic role which it is entitled to and which it had got in its past by aiming at the enhancement of local grape variety in harmony with others, for example with the neighboring area of the Conegliano and Valdobbiadene Prosecco Superiore DOCG; 2-a. Maintaining and further improving the important natural and healthy environment of Belluno, and making its territory and the “lookout” means of the environmental sustainability, including its vineyards, even more naturally original and sustainable 4.1C.