OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Molecular characterization of wines nucleophilic potential by ultra-performance liquid chromatography high resolution mass spectrometry

Molecular characterization of wines nucleophilic potential by ultra-performance liquid chromatography high resolution mass spectrometry

Abstract

The knowledge about the molecular fraction associated to white wines oxidative stability is still poorly understood. However, the role of S- N- congaing compounds, like glutathione (GSH) and other peptides, as a source of reductant in many oxidation reactions protecting against heavy metals toxicity, or lipids and polyphenols oxidation as ROS-scavenger is today very well established. GSH is also reported being an important antioxidant, reacting as nucleophile substance that conjugates straightforwardly with reactive electrophiles resulting in foods and beverages chemical oxidative stability. It has been shown that, GSH efficiency against wines sensory oxidative stability is related to wines antioxidant metabolome consisting of N- and S- containing compounds like amino acids, aromatic compounds and peptides. These compounds present a strong nucleophilic character and their reactivity with wines electrophiles such as oxidized polyphenols, suggests the formation of stable adducts presenting lower oxidative potential. We consider that the knowledge behind the chemical composition of wines antioxidant metabolome is a key factor to estimate wines aging potential. 

In that respect, the present study introduces an original determination of the pool of nucleophilic compounds that can react with quinones in wine acidic conditions. One step derivatization of nucleophiles has been realized in wines with no pH adjustment by using 4‑methyl‑1,2‑benzoquinone (Q) as a nucleophilic probe. LC‑MS‑QToF analysis of 92 white followed by Multivariate analysis (PLS‑DA) and Wilcoxon test allowed to isolate up to 141 putative nucleophilic compounds. Only 20 of these compounds were detected without derivatization, showing an increase in detection level by quinone trapping, especially for thiols. Moreover, annotation using online database (Oligonet, Metlin and KEGG) as well as elementary formula determined by isotopic profile and MS² analysis allowed to show an important proportion of amino acids and peptides and to identify 4 compounds (GSH, Cys, homocysteine and Pro). The majority of the putative peptides can contain amino acids that are known to have antioxidant properties (Val, Leu, Ile, Pro, Trp, Cys and Met). 

 

These results show that derivatization of wines using Q allows to enhance thiol detection levels and to determine a pool of untargeted nucleophilic compounds that can be part of wines antioxidant metabolome

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Remy Romanet, Florian Bahut, Maria Nikolantonaki, Regis Gougeon

Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin, Jules Guyot, 21000 Dijon, France

Contact the author

Keywords

LC-QToF-MS, Nucleophilic compounds, Untargeted analysis, White wines oxidative stability 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Effect of polysaccharide extracts from grape pomace on the oxidative evolution of hydroxycinnamic acids

Phenolic acids are especially sensitive to oxidation, so they can greatly impact wine sensory characteristics and stability [1]. Furthermore, extracts derived from grape pomace have been previously postulated as possible oenological adjuvants for wine protection [2].

New satellite-based sampling protocols for grapevine nutrient monitoring

Extension specialists often recommend nutrient monitoring through leaf blade or petiole sampling twice a season for each vineyard block. However, due to the time and labor required to collect a large, random sample, many growers complete the task infrequently or incorrectly. Readily available remote sensing images capture the vineyard variability at both spatial and temporal scales, which can capture canopy and soil variability and be used to guide growers to representative sampling locations.

A versatile genome editing platform for grapevine: improving biotic and abiotic stress resilience 

New Plant Breeding Techniques (NPBTs) have arisen with the objective of surmounting the constraints inherent in conventional breeding methodologies, thereby enhancing plant resilience against both biotic and abiotic stresses. To date the application of genome editing in grapevine is still limited by the necessity to overcome recalcitrance to produce embryogenic calli and to regenerate plants. In our studies, we developed a smart and versatile genetic transformation system carrying all the most promising features of different genome editing approaches. In specific, we joined the GRF-GIF expression to improve regeneration, the systemic movement of the editing transcripts through tRNA-like sequences (TLS) and the cisgenic-like approach to remove transgenes.

Vine phenology and climate in Bordeaux, since the beginning of the XIXth century

We analyze the effects of climate (temperature and pluviometry) on the phenologic stages of the vine (débourrement, flowering, ripening and grape harvest). We rebuilt time series starting from the beginning of the XIXth century for the Medoc and the area of Bordeaux, data very seldom mobilized by researchers.

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.