OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Molecular characterization of wines nucleophilic potential by ultra-performance liquid chromatography high resolution mass spectrometry

Molecular characterization of wines nucleophilic potential by ultra-performance liquid chromatography high resolution mass spectrometry

Abstract

The knowledge about the molecular fraction associated to white wines oxidative stability is still poorly understood. However, the role of S- N- congaing compounds, like glutathione (GSH) and other peptides, as a source of reductant in many oxidation reactions protecting against heavy metals toxicity, or lipids and polyphenols oxidation as ROS-scavenger is today very well established. GSH is also reported being an important antioxidant, reacting as nucleophile substance that conjugates straightforwardly with reactive electrophiles resulting in foods and beverages chemical oxidative stability. It has been shown that, GSH efficiency against wines sensory oxidative stability is related to wines antioxidant metabolome consisting of N- and S- containing compounds like amino acids, aromatic compounds and peptides. These compounds present a strong nucleophilic character and their reactivity with wines electrophiles such as oxidized polyphenols, suggests the formation of stable adducts presenting lower oxidative potential. We consider that the knowledge behind the chemical composition of wines antioxidant metabolome is a key factor to estimate wines aging potential. 

In that respect, the present study introduces an original determination of the pool of nucleophilic compounds that can react with quinones in wine acidic conditions. One step derivatization of nucleophiles has been realized in wines with no pH adjustment by using 4‑methyl‑1,2‑benzoquinone (Q) as a nucleophilic probe. LC‑MS‑QToF analysis of 92 white followed by Multivariate analysis (PLS‑DA) and Wilcoxon test allowed to isolate up to 141 putative nucleophilic compounds. Only 20 of these compounds were detected without derivatization, showing an increase in detection level by quinone trapping, especially for thiols. Moreover, annotation using online database (Oligonet, Metlin and KEGG) as well as elementary formula determined by isotopic profile and MS² analysis allowed to show an important proportion of amino acids and peptides and to identify 4 compounds (GSH, Cys, homocysteine and Pro). The majority of the putative peptides can contain amino acids that are known to have antioxidant properties (Val, Leu, Ile, Pro, Trp, Cys and Met). 

 

These results show that derivatization of wines using Q allows to enhance thiol detection levels and to determine a pool of untargeted nucleophilic compounds that can be part of wines antioxidant metabolome

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Remy Romanet, Florian Bahut, Maria Nikolantonaki, Regis Gougeon

Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin, Jules Guyot, 21000 Dijon, France

Contact the author

Keywords

LC-QToF-MS, Nucleophilic compounds, Untargeted analysis, White wines oxidative stability 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Trials with machine harvested sauvignon blanc: the importance of grape transport time and temperature

It is well known that free varietal thiols, in particular 3-mercaptohexanol (3MH) and 3-mercaptohexyl ace-tate (3MHA), are important constituents to the aroma of New Zealand Sauvignon blanc wines.

Viticultural potential assessment and its spatial delineation analysis in Goriška Brda viticultural area

Viticultural potential has a complex conditioning, determined by relief,
soil, climate and lithology. Delineation of viticultural potential from vineyard areas is essential for the purpose to collect the necessary data for viticultural zoning. Using this data, we can achieve greater yield quality, which is the most important criteria in viticulture. The main purpose of this research is
characterizing of viticultural potential and zoning of homogeneous viticultural zones in Goriška Brda region by assessing the suitability of defined ecological factors.

Identifying physiological and genetic bases of grapevine adaptation to climate change with maintained quality: Genome diversity as a driver for phenotypic plasticity  (‘PlastiVigne’ project)

In the face of climate change, new grapevine varieties will have to show an adaptive phenotypic plasticity to maintain production with erratic water resources, and still ensure the quality of the final product. Their selection requires a better knowledge of the genetic basis of those traits and of the elementary processes involved in their variability. ‘PlastiVigne’, an emblematic project of the Vinid’Occ key challenge, funded by the Occitanie Region (France), tackles this issue with innovative genomic and physiological tools implemented on a unique panel of grape genetic resources representing the genetic diversity of Vitis vinifera. A graph-pangenome is developed from a representative set of high-quality genomes to study the extent and impact of structural genome variations and chromosomal rearrangements in the rapid adaptation capacity of grapevine.

Investigating the carbon sequestration potential in vineyard soils–the SUSTAIN project

The SUSTAIN project aims at assessing the soil organic carbon (SOC) stock and vulnerability in vineyard in a climate change scenario.

Viñedos de la D.O. Ribeira Sacra: heterogeneidad varietal y sanitaria

La D.O. Ribeira Sacra (Galicia, N.O. de España) se distribuye a lo largo de las riberas de los ríos Miño y Sil. Su característica mas destacada son las fuertes pendientes. Desde 1990 se estudia el estado