terclim by ICS banner
IVES 9 IVES Conference Series 9 HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

Abstract

Wine varietal aroma is the result of a mixture of compounds formed or liberated from specific grape-aroma precursors. Their liberation/formation from their specific precursors can occur spontaneously by acid catalyzed rearrangements or hydrolysis or by the action of the yeast enzymatic activities. The influence of yeast during fermentation on the production of these volatile compounds has been widely studied however, the effect of this influence during aging is not fully understood. In order to evaluate these processes several indirect strategies have been used to study aroma precursors although they are not useful to understand the chemistry of the process. Therefore, the deep development of liquid chromatograph-mass spectrometers (LC-MS) during the last years has promoted some direct analysis of aroma precursors to identify them.

The objective of the present work is to study the influence of yeast on the aromatic precursors of wine and how that modulates the wine aroma during aging and its longevity. For that, four different yeasts (three S. cerevisae strains, Lalvin QA23™, Lalvin Sauvy™ and Lalvin Rhône 2056®, and S. kudriavzevii CR89D1) were selected attending to their different abilities to modulate aroma compounds. A must obtained combining 6 different grape varieties was fermented with the 4 strains and wines were aged under anoxia during 12, 24 and 96 hours at 75ºC. After this process volatile compounds of young and aged wines were analyzed by gas chromatography mass spectrometry (GC-MS) and in parallel, the aromatic precursor fraction of must and young wines was characterized using UPLC-QTOF-MS untargeted analysis.

The targeted approach revealed remarkable differences in levels of vinylphenols, some terpenes, polyfunctional mercaptans, esters and some lactones. However, the concentration of norisoprenoid aroma compounds was not influenced by yeast. As it was expected, the metabolomic study revealed notable changes on young wines respect to the grape must, although the effect of yeast on putative glycosidic aroma precursors was marginal. These compounds were more influenced during aging, which supports the relevance of aging for producing varietal aroma derived from glycosidic precursors. This study has also made it possible the putative identification of some glycosidic precursors, which have to be studied to evaluate their relevance on the wine varietal aroma.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Ignacio Ontañón¹, Marie Denat¹, Elayma Sánchez-Acevedo¹, Vicente Ferreira¹

1. Laboratorio de Análisis del Aroma y Enología (LAAE). Department of Analytical Chemistry, Universidad de Zaragoza, Ins-tituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Associate Unit to Instituto de Ciencias de la Vid y del Vino (ICVV)(UR-CSIC-GR), c/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
2. Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980, Paterna, Spain

Contact the author*

Keywords

Saccharomyces, Glycosidic aroma precursors, Metabolomics, Wine varietal aroma

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECTIVENESS OF APPLIED MATERIALS IN REDUCING THE ABSORPTION OF SMOKE MARKER COMPOUNDS IN A SIMULATED WILDFIRE SCENARIO

Smoke taint (ST) is a grape-wine off-flavour that may occur when grapes absorb volatile phenols (VPs) originating from wildfire smoke (1). ST is associated with the negative sensory attributes such as smoky and ashy notes. VPs are glycosylated in the plant and thus present in both free and bound forms (2; 3). Wildfire smoke has resulted in a decline in grape and wine quality and financial losses which has become a prominent issue for the global wine industry.

SIP and save the planet: a sensory and consumer exploration of australian wines made from potentially drought-tolerant white wine grapes

In order to attenuate the effects of climate change on the ability to cultivate quality wine grape vines in Australia, it is essential to adapt to the projected less favourable Australian climate scenarios. One response may be to convert a portion of the current grapevine plantings to those varieties that demand less water and can tolerate increased heat. This investigation aimed to (i) generate sensory profiles and (ii) obtain knowledge about Australian wine consumers’ preferences and opinions of Australian wines made from potentially drought tolerant, white wine grape varieties not traditionally cultivated in Australia. A Rate-All-That-Apply (RATA) sensory panel (n = 49) generated sensory profiles of 44 commercial white wines made from 7 different white grape varieties (Arinto, Fiano, Garganega, Greco, Verdejo, Verdelho and Vermentino), plus two benchmark examples each of an Australian Riesling, Pinot Gris and Chardonnay wine.

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

EUGENOL AS QUALITY MARKER OF WINES AND SPIRITS FROM HYBRID VINES: IMPACT OF DIFFERENT WINEMAKING AND DISTILLATION PROCESSES

Eugenol, widely spread in various plants notably cloves, basil and bay, was identified too in wines from hybrid grapes without contact with oak wood. This aromatic molecule presents a strong spicy note of clove and also antifongic properties. Eugenol was described as an endogenous compound of Baco blanc, from the grapes to the spirits of Armagnac area. Moreover, this compound is a chemical marker of Baco blanc products quality.
Influences of harvest time and different winemaking processes (settling, use of enzymatic preparations, lees content and stock time before distillation) on Baco blanc wine eugenol contents were explored using a two-levels full factorial Design of Experiments (DoEs).

NEAR INFRARED SPECTROSCOPY FOR THE ESTIMATION OF TEMPRANILLO BLANCO VOLATILE COMPOSITION ALONG GRAPE MATURATION

Grape volatile compounds are mainly responsible for wine aroma, so it is important to know the va-rietal aromatic composition throughout ripening process. Currently, there are no tools that allow mea-suring the aromatic composition of grapes, in intact berries and periodically, throughout ripening, in the vineyard or in the winery. For this reason, this work evaluated the use of near infrared spectroscopy (NIR) to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening. For this purpose, NIR spectra (1100-2100 nm) were acquired from 240 samples of in-tact berries, collected at different dates, from veraison to overripening.