terclim by ICS banner
IVES 9 IVES Conference Series 9 HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

Abstract

Wine varietal aroma is the result of a mixture of compounds formed or liberated from specific grape-aroma precursors. Their liberation/formation from their specific precursors can occur spontaneously by acid catalyzed rearrangements or hydrolysis or by the action of the yeast enzymatic activities. The influence of yeast during fermentation on the production of these volatile compounds has been widely studied however, the effect of this influence during aging is not fully understood. In order to evaluate these processes several indirect strategies have been used to study aroma precursors although they are not useful to understand the chemistry of the process. Therefore, the deep development of liquid chromatograph-mass spectrometers (LC-MS) during the last years has promoted some direct analysis of aroma precursors to identify them.

The objective of the present work is to study the influence of yeast on the aromatic precursors of wine and how that modulates the wine aroma during aging and its longevity. For that, four different yeasts (three S. cerevisae strains, Lalvin QA23™, Lalvin Sauvy™ and Lalvin Rhône 2056®, and S. kudriavzevii CR89D1) were selected attending to their different abilities to modulate aroma compounds. A must obtained combining 6 different grape varieties was fermented with the 4 strains and wines were aged under anoxia during 12, 24 and 96 hours at 75ºC. After this process volatile compounds of young and aged wines were analyzed by gas chromatography mass spectrometry (GC-MS) and in parallel, the aromatic precursor fraction of must and young wines was characterized using UPLC-QTOF-MS untargeted analysis.

The targeted approach revealed remarkable differences in levels of vinylphenols, some terpenes, polyfunctional mercaptans, esters and some lactones. However, the concentration of norisoprenoid aroma compounds was not influenced by yeast. As it was expected, the metabolomic study revealed notable changes on young wines respect to the grape must, although the effect of yeast on putative glycosidic aroma precursors was marginal. These compounds were more influenced during aging, which supports the relevance of aging for producing varietal aroma derived from glycosidic precursors. This study has also made it possible the putative identification of some glycosidic precursors, which have to be studied to evaluate their relevance on the wine varietal aroma.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Ignacio Ontañón¹, Marie Denat¹, Elayma Sánchez-Acevedo¹, Vicente Ferreira¹

1. Laboratorio de Análisis del Aroma y Enología (LAAE). Department of Analytical Chemistry, Universidad de Zaragoza, Ins-tituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Associate Unit to Instituto de Ciencias de la Vid y del Vino (ICVV)(UR-CSIC-GR), c/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
2. Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980, Paterna, Spain

Contact the author*

Keywords

Saccharomyces, Glycosidic aroma precursors, Metabolomics, Wine varietal aroma

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

A NEW TOOL TO QUANTIFY COMPOUNDS POTENTIALLY INVOLVED IN THE FRUITY AROMA OF RED WINES. DEVELOPMENT AND APPLICATION TO THE STU-DY OF THE FRUITY CHARACTER OF RED WINES MADE FROM VARIOUS GRAPE VARIETIES

A wide range of olfactory descriptors ranging from fresh and jammy fruit notes to cooked and oxidized fruit notes could describe the fruity aroma of red wines [1]. The fruity character of a wine is mainly related to the grape variety selected, to the terroir and the vinification process applied for its conception. In white wines, some volatile compounds confer directly their aroma to the wine while the question of “key” compound is more complex in red wines. According to many studies performed over the past decades, some fruity ethyl esters are directly involved in the fruity perception of red wines while others, present at subthreshold concentrations, participate indirectly to the fruity expression via perceptive interactions [2].

CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

Copper in white wine can be associated with Cu(II) organic acids (Cu fraction I), Cu(I) thiol species (Cu fraction II), and Cu sulfides (Cu fraction III). The first two fractions are associated with the repression of reductive aromas in white wine, but these fractions gradually decrease in concentration during the normal bottle aging of wine. Although exposure of white wine to fluorescent light is known to induce the accumulation of volatile sulfur compounds, causing light-struck aroma, the influence on the loss of protective Cu fractions is uncertain. Riboflavin is known to be a critical initiator of photochemical reac-tions in wine, but the rate of its decay under short-term light exposure in different coloured bottles and for wine of different oxygen concentrations is not well understood.

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.

2-YEARS STUDY ON COMPARISON BETWEEN THE VOLATILE CHEMICAL PROFILE OF TWO DIFFERENT BLENDS FOR THE ENHANCEMENT OF “VALPOLICELLA SUPERIORE”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest.

WINE RACKING IN THE WINERY AND THE USE OF INERT GASES: CONTROL AND OPTIMIZATION OF THE PROCESS

Atmospheric oxygen (O₂) generates oxidation in wines that affect their physicochemical and sensory evolution. The O₂ uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O₂ uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The aim was to study the uptake of O₂ during the racking of a model wine as a reference and to compare with purging the destination tank with different inert gases.