terclim by ICS banner
IVES 9 IVES Conference Series 9 HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

Abstract

Wine varietal aroma is the result of a mixture of compounds formed or liberated from specific grape-aroma precursors. Their liberation/formation from their specific precursors can occur spontaneously by acid catalyzed rearrangements or hydrolysis or by the action of the yeast enzymatic activities. The influence of yeast during fermentation on the production of these volatile compounds has been widely studied however, the effect of this influence during aging is not fully understood. In order to evaluate these processes several indirect strategies have been used to study aroma precursors although they are not useful to understand the chemistry of the process. Therefore, the deep development of liquid chromatograph-mass spectrometers (LC-MS) during the last years has promoted some direct analysis of aroma precursors to identify them.

The objective of the present work is to study the influence of yeast on the aromatic precursors of wine and how that modulates the wine aroma during aging and its longevity. For that, four different yeasts (three S. cerevisae strains, Lalvin QA23™, Lalvin Sauvy™ and Lalvin Rhône 2056®, and S. kudriavzevii CR89D1) were selected attending to their different abilities to modulate aroma compounds. A must obtained combining 6 different grape varieties was fermented with the 4 strains and wines were aged under anoxia during 12, 24 and 96 hours at 75ºC. After this process volatile compounds of young and aged wines were analyzed by gas chromatography mass spectrometry (GC-MS) and in parallel, the aromatic precursor fraction of must and young wines was characterized using UPLC-QTOF-MS untargeted analysis.

The targeted approach revealed remarkable differences in levels of vinylphenols, some terpenes, polyfunctional mercaptans, esters and some lactones. However, the concentration of norisoprenoid aroma compounds was not influenced by yeast. As it was expected, the metabolomic study revealed notable changes on young wines respect to the grape must, although the effect of yeast on putative glycosidic aroma precursors was marginal. These compounds were more influenced during aging, which supports the relevance of aging for producing varietal aroma derived from glycosidic precursors. This study has also made it possible the putative identification of some glycosidic precursors, which have to be studied to evaluate their relevance on the wine varietal aroma.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Ignacio Ontañón¹, Marie Denat¹, Elayma Sánchez-Acevedo¹, Vicente Ferreira¹

1. Laboratorio de Análisis del Aroma y Enología (LAAE). Department of Analytical Chemistry, Universidad de Zaragoza, Ins-tituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Associate Unit to Instituto de Ciencias de la Vid y del Vino (ICVV)(UR-CSIC-GR), c/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
2. Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980, Paterna, Spain

Contact the author*

Keywords

Saccharomyces, Glycosidic aroma precursors, Metabolomics, Wine varietal aroma

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

In recent years characterized by hot dry summers, the implementation of innovative irrigation tools in the vineyard represents a crucial challenge to ensure optimal production and to avoid excess of water consumption. It is known that the grapevine reacts to multiple stresses – i.e., high temperatures and wa- ter shortage – through adaptive mechanisms that are detrimental to the yield. Furthermore, this condi- tion is usually aggravated by high solar radiation, which could negatively affect the phenolic composi- tion of the grapes. Therefore, a cooling system has been developed aiming to reduce bunches’ sunburn damage.

FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

The alteration in the rainfall pattern and the increase in the temperatures associated to global climate change are already affecting wine production in many viticultural regions all around the world (1). In fact, grapes are nowadays ripening earlier from a technological point of view than in the past, but they are not necessarily mature from a phenolic point of view. Consequently, the wines made from these grapes can be unbalanced or show high alcohol content. Dramatic shifts in viticultural areas are currently being projected for the future (2).

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.

MOVING FROM SULFITES TO BIOPROTECTION: WHICH IMPACT ON CHARDONNAY WINE?

Over the last few years, several tools have been developed to reduce the quantity of sulfites used during winemaking, including bioprotection. Although its effectiveness in preventing the development of spoilage microorganisms has been proven, few data are available on the impact of sulfite substitution by bioprotection on the final product. The objective of this study was therefore to characterize Chardonnay wines with the addition of sulfite or bioprotection in the pre-fermentation stage. The effects of both treatments on resulting matrices was evaluated at several scales: analysis of classical oenological parameters, antioxidant capacity, phenolic compounds, non-volatile metabolome and sensory profile.

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.