terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECT OF FERMENTATION TEMPERATURE GRADIENT AND SKIN CONTACT ON ESTER AND THIOL PRODUCTION AND TROPICAL FRUIT PERCEPTION IN CHARDONNAY WINES

EFFECT OF FERMENTATION TEMPERATURE GRADIENT AND SKIN CONTACT ON ESTER AND THIOL PRODUCTION AND TROPICAL FRUIT PERCEPTION IN CHARDONNAY WINES

Abstract

Wines with tropical fruit aromas have become increasingly more available1,2. With increased availability of different wine styles, it has become important to understand the compounds that cause the fruity aromas in wine. Previous work using micro fermentations showed that fermentation temperature gradients and time on skins resulted in an increase in thiol and ester compounds post fermentation and these compounds are known to cause tropical fruit aroma in wines³. This work aimed to scale up these fermentations/operations to determine if the desired aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level. Four treatments were tested at varying fermentation temperature gradients and skin contact times: control fermentation at 13°C with no skin contact (SC0FG0), fermentation at 13°C with 18 hours of skin contact (SC1FG0), fermentation temperature gradient by time (20°C for 4 days then reduced to 13°C) with no skin contact (SC0FG1), fermentation temperature gradient by time with 18 hours of skin contact (SC1FG1). A change in winemaking scale did not alter the pH, residual sugar, or alcohol of the wines. Chemical analysis and descriptive sensory analysis were conducted to determine the alterations on the composition and aroma profiles of these wines. Check-all-that-apply (CATA) showed different prominent aromas for each wine treatment, with pome fruit, stone fruit, pineapple, honeysuckle, honey, and passionfruit being the most perceived aromas. Descriptive analysis (DA) showed that SC1FG0 was significantly different from both SC0FG1 and SC1FG1. SC1FG0 presented the most tropical fruit aromas, SC1FG1 presented more stone fruit, and SC0FG1 presented more honey and lemon/lime. Understanding the causes of tropical fruit aromas in wine and processes that alter these compounds is necessary to ensure winemakers can achieved tropical fruit quality consistently.

 

1. Scutarașu, E. C., Luchian, C. E., Vlase, L., Nagy, K., Colibaba, L. C., Trinca, L. C., & Cotea, V. V. (2022). Influence Evaluation of Enzyme Treatments on Aroma Profile of White Wines. Agronomy, 12(11), 2897.
2. Rabitti, N. S., Cattaneo, C., Appiani, M., Proserpio, C., & Laureati, M. (2022). Describing the Sensory Complexity of Italian Wines: Application of the Rate-All-That-Apply (RATA) Method. Foods, 11(16), 2417.
3. Iobbi, A. (2022). Tropical Fruit Aroma: Relevance to Oregon White Wines, the Effect of Winemaking Processes on Fermentation Esters and Volatile Thiol Levels, and the Relationship Between Sensory Perception and Volatile Chemistry. Oregon State University, Corvallis, OR

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Chase J. Lucas¹, Angelica Iobbi¹, D.C. Cerrato¹, and Elizabeth Tomasino¹

1. Department of Food Science and Technology, Oregon State University, 100 Weigand Hall, 3051 SW Campus Way Corvallis, OR 97331

Contact the author*

Keywords

fermentation gradient, skin-contact, CATA, sensory analysis

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification.

NEW TREATMENTS FOR TEMPRANILLO WINES BY USING CABERNET SAUVIGNON VINE-SHOOTS AND MICRO-OXYGENATION

Toasted vine-shoots as enological additive represents a promising topic due to their significant effect on wine profile. However, the use of this new enological tool with SEGs varieties different than wine and combined with others winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far, despite this combination could result in wine with high chemical and organoleptic quality.

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

HOW TO EVALUATE THE QUALITY OF NATURAL WINES?

The movement of Natural wines has clearly increased in the last few years, to reach a high demand from consumers nowadays. Switzerland has not been left out of this movement and has created a dedicated association in 2021. This association has the ambition to develop a specific tasting sheet for natural wines. The study of the tasting notes shows that the olfactory description of wines is recent but predominant today. But wine is a product makes to be drunk and not (just) to smell it. Based on these findings, a new 100-point tasting sheet has been developed. The main characteristics are 1) an evaluation in the mouth before the description of the olfaction, 2) to give 50% of the points on the judgment for the mouth characteristics, 3) to pejorate the visual aspects only if the wine is judged as “not drinkable” and 4) to express personal emotions.