terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECT OF FERMENTATION TEMPERATURE GRADIENT AND SKIN CONTACT ON ESTER AND THIOL PRODUCTION AND TROPICAL FRUIT PERCEPTION IN CHARDONNAY WINES

EFFECT OF FERMENTATION TEMPERATURE GRADIENT AND SKIN CONTACT ON ESTER AND THIOL PRODUCTION AND TROPICAL FRUIT PERCEPTION IN CHARDONNAY WINES

Abstract

Wines with tropical fruit aromas have become increasingly more available1,2. With increased availability of different wine styles, it has become important to understand the compounds that cause the fruity aromas in wine. Previous work using micro fermentations showed that fermentation temperature gradients and time on skins resulted in an increase in thiol and ester compounds post fermentation and these compounds are known to cause tropical fruit aroma in wines³. This work aimed to scale up these fermentations/operations to determine if the desired aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level. Four treatments were tested at varying fermentation temperature gradients and skin contact times: control fermentation at 13°C with no skin contact (SC0FG0), fermentation at 13°C with 18 hours of skin contact (SC1FG0), fermentation temperature gradient by time (20°C for 4 days then reduced to 13°C) with no skin contact (SC0FG1), fermentation temperature gradient by time with 18 hours of skin contact (SC1FG1). A change in winemaking scale did not alter the pH, residual sugar, or alcohol of the wines. Chemical analysis and descriptive sensory analysis were conducted to determine the alterations on the composition and aroma profiles of these wines. Check-all-that-apply (CATA) showed different prominent aromas for each wine treatment, with pome fruit, stone fruit, pineapple, honeysuckle, honey, and passionfruit being the most perceived aromas. Descriptive analysis (DA) showed that SC1FG0 was significantly different from both SC0FG1 and SC1FG1. SC1FG0 presented the most tropical fruit aromas, SC1FG1 presented more stone fruit, and SC0FG1 presented more honey and lemon/lime. Understanding the causes of tropical fruit aromas in wine and processes that alter these compounds is necessary to ensure winemakers can achieved tropical fruit quality consistently.

 

1. Scutarașu, E. C., Luchian, C. E., Vlase, L., Nagy, K., Colibaba, L. C., Trinca, L. C., & Cotea, V. V. (2022). Influence Evaluation of Enzyme Treatments on Aroma Profile of White Wines. Agronomy, 12(11), 2897.
2. Rabitti, N. S., Cattaneo, C., Appiani, M., Proserpio, C., & Laureati, M. (2022). Describing the Sensory Complexity of Italian Wines: Application of the Rate-All-That-Apply (RATA) Method. Foods, 11(16), 2417.
3. Iobbi, A. (2022). Tropical Fruit Aroma: Relevance to Oregon White Wines, the Effect of Winemaking Processes on Fermentation Esters and Volatile Thiol Levels, and the Relationship Between Sensory Perception and Volatile Chemistry. Oregon State University, Corvallis, OR

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Chase J. Lucas¹, Angelica Iobbi¹, D.C. Cerrato¹, and Elizabeth Tomasino¹

1. Department of Food Science and Technology, Oregon State University, 100 Weigand Hall, 3051 SW Campus Way Corvallis, OR 97331

Contact the author*

Keywords

fermentation gradient, skin-contact, CATA, sensory analysis

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ASSESSMENT OF ‘DOLCETTO’ GRAPES AND WINES FROM DIFFERENT AREAS OF OVADA DOCG

Dolcetto (Vitis vinifera L.) is one of the traditionally cultivated varieties in Piedmont (north-east Italy). Dolcetto wines have long been associated with local consumption and they are little known internationally. In particular, the Ovada area (south-east Piedmont), even if it represents a small share of the regional PDO Dolcetto production, is one of the oldest and vocated territory, giving wine also suitable for aging. In this study, the basic composition and phenolic content of Dolcetto grapes for Ovada DOCG wines have been investigated in three different vintages (2020-2022), as well as the main aspects of the derived commercial and experimental wines (basic parameters, phenolics, volatile compounds, sensory properties).

MODELLING THE AGEING POTENTIAL OF SYRAH RED WINES BY ACCELERATED AGEING TESTS: INFLUENCE OF ANTIOXIDANT ASSAYS AND PHENOLIC COMPOSITION

Red wine ageing is an important step in the red wine evolution and impacts its chemical and sensory characteristics through many chemicals and physico-chemical reactions. The kinetics of these evolutions depend on the wine studied and influence the wine ageing potential. Generally, high quality red wines require a longer period of bottle ageing before consumption¹. The ageing potential is an impor-tant parameter for wine quality and is related to the capacity of a wine to undergo oxidation over time². Phenolic compounds which are ones of the main substrates for oxidation can then potentially modulate ageing potential³.

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermen- tation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.