terclim by ICS banner
IVES 9 IVES Conference Series 9 AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

Abstract

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.

Even if the chemical identity of a wine is shaped by a large variety of factors (soil, climate, varieties, microbiology, ageing process), we know now that the terroir and the maturation plays a key role in the sensorial and chemical identity of wines even after ageing (1–4). The aims of that study was to explore the links between terroir, ageing or vintages and the chemical composition. A targeted approach have been tested. It involves the quantification of molecular markers such as esters, terpenes, norisoprenoids or sulphur compounds. It have been applied to a large set of wines composed by 80 samples produced by 7 wineries during a selection of vintages between 1990 to 2007. The statistical analysis of the results permits to highlight similar compositions between wines produced in the same winery despite the variation of berry composition due to the vintage, the variations dues to technical choices and to ageing time. In the current study, the whole volatile composition is essential to the uniqueness of the wines because there are no compounds that are exclusively involved in discrimination of estate. This shows the complex effect of the grape and wine matrix on achieving a typical product. Overall, in the aromatic matrix, there is an existence of a hierarchy in the importance of compounds that permits the unicity of Bordeaux estate. Hence, three families of compounds (terpenes, norisoprenoids and esters) which made it possible to discriminate between the seven Bordeaux estates studied and are therefore influenced by the composition of the grapes. These include TDN, vitispirane, β-damascenone, terpinen-1-ol, α-terpinene, methyl salicylate, cis-linalooxide, ethyl esters of fatty acids (C₄C₂, C₆C₂, C₈C₂) and many others. It’s interesting to note that even after years of bottle ageing, the imprint of the grape is still visible. The personality of each estate through its specific terroir is therefore an indispensable element for the aromatic singularity of each great wine.

 

1. Le Menn N, van Leeuwen C, Picard M, riquier laurent, de Revel G, Marchand S. Effect of vine water and nitrogen status, as well as temperature, on some aroma compounds of aged red Bordeaux wines. J Agric Food Chem. 2 juin 2019;acs.jafc.9b00591.
2. Luzzini G, Slaghenaufi D, Pasetto F, Ugliano M. Influence of grape composition and origin, yeast strain and spontaneous fermentation on aroma profile of Corvina and Corvinone wines. LWT. mai 2021;143:111120.
3. Van Leeuwen C, Barbe JC, Darriet P, Geffroy O, Gomès E, Guillaumie S, et al. Recent advancements in understanding the terroir effect on aromas in grapes and wines: This article is published in cooperation with the XIIIth International Terroir Congress November 17-18 2020, Adelaide, Australia. Guests editors: Cassandra Collins and Roberta De Bei. OENO One [Internet]. 5 nov 2020 [cité 18 janv 2021];54(4). Disponible sur: https://oeno-one.eu/article/view/3983
4. Van Leeuwen C, Barbe JC, Darriet P, Destrac-Irvine A, Gowdy M, Lytra G, et al. Aromatic maturity is a cornerstone of terroir expression in red wine: This article is published in cooperation with Terclim 2022 (XIVth International Terroir Congress and 2nd ClimWine Symposium), 3-8 July 2022, Bordeaux, France. OENO One. 24 juin 2022;56(2):335-51.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Justine Laboyrie¹, Davide Slagheunaufi², Giovani Luzzini², Maurizio Ugliano², Warren Albertin¹, Laurent Riquier¹, Gilles de Revel¹, Stéphanie Marchand¹.

1. Unité de Recherche Œnologie, UMR 1366 INRAE, ISVV, University of Bordeaux, Bordeaux INP, Villenave d’Ornon, 33882, France
2. University of Verona, Department of Biotechnology, Villa Lebrecht, via della Pieve 70, San Pietro in Cariano, 37029, Italy

Contact the author*

Keywords

Wine identity, Aroma compounds, Terroir, Ageing

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2.

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines.

POTENTIAL DEACIDIFYING ROLE OF A COMMERCIAL CHITOSAN: IMPACT ON PH, TITRATABLE ACIDITY, AND ORGANIC ACIDS IN MODEL SOLUTIONS AND WHITE WINE

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps. The main derivative of chitin is chitosan (CH), produced by N-deacetylation of chitin in alkaline solutions. Over the past decade, the OIV/OENO 338A/ 2009 resolution approved the addition of allergen-free fungoid CH to must and wine as an adjuvant for microbiological control, prevention of haziness, metals chelation and ochratoxins removal (European Commission. 2011). Despite several studies on application of CH in winemaking, there are still very limited and controversial data on its interaction with acidic components in wine (Colan-gelo et al., 2018; Castro Marin et al., 2021).

AGING PATTERNS OF VARIETAL VOLATILE PROFILES OF WHITE WINES: A CASE STUDY ON 18 ITALIAN VARIETAL WHITE WINES

During wine aging many compositional changes take place. In particular, aroma undergoes dramatic modifications through a wide range of reactions that to date are only partly understood. Italy owns one of the largest ampelographic heritages worldwide, with over three-hundred different varieties. Among these, many white grapes are employed for the production of dry still white wines. Some of these wines are consumed young while others are more prone to aging. For many of these wines, the aging patterns related to volatile composition are still unknown.