terclim by ICS banner
IVES 9 IVES Conference Series 9 AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

Abstract

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.

Even if the chemical identity of a wine is shaped by a large variety of factors (soil, climate, varieties, microbiology, ageing process), we know now that the terroir and the maturation plays a key role in the sensorial and chemical identity of wines even after ageing (1–4). The aims of that study was to explore the links between terroir, ageing or vintages and the chemical composition. A targeted approach have been tested. It involves the quantification of molecular markers such as esters, terpenes, norisoprenoids or sulphur compounds. It have been applied to a large set of wines composed by 80 samples produced by 7 wineries during a selection of vintages between 1990 to 2007. The statistical analysis of the results permits to highlight similar compositions between wines produced in the same winery despite the variation of berry composition due to the vintage, the variations dues to technical choices and to ageing time. In the current study, the whole volatile composition is essential to the uniqueness of the wines because there are no compounds that are exclusively involved in discrimination of estate. This shows the complex effect of the grape and wine matrix on achieving a typical product. Overall, in the aromatic matrix, there is an existence of a hierarchy in the importance of compounds that permits the unicity of Bordeaux estate. Hence, three families of compounds (terpenes, norisoprenoids and esters) which made it possible to discriminate between the seven Bordeaux estates studied and are therefore influenced by the composition of the grapes. These include TDN, vitispirane, β-damascenone, terpinen-1-ol, α-terpinene, methyl salicylate, cis-linalooxide, ethyl esters of fatty acids (C₄C₂, C₆C₂, C₈C₂) and many others. It’s interesting to note that even after years of bottle ageing, the imprint of the grape is still visible. The personality of each estate through its specific terroir is therefore an indispensable element for the aromatic singularity of each great wine.

 

1. Le Menn N, van Leeuwen C, Picard M, riquier laurent, de Revel G, Marchand S. Effect of vine water and nitrogen status, as well as temperature, on some aroma compounds of aged red Bordeaux wines. J Agric Food Chem. 2 juin 2019;acs.jafc.9b00591.
2. Luzzini G, Slaghenaufi D, Pasetto F, Ugliano M. Influence of grape composition and origin, yeast strain and spontaneous fermentation on aroma profile of Corvina and Corvinone wines. LWT. mai 2021;143:111120.
3. Van Leeuwen C, Barbe JC, Darriet P, Geffroy O, Gomès E, Guillaumie S, et al. Recent advancements in understanding the terroir effect on aromas in grapes and wines: This article is published in cooperation with the XIIIth International Terroir Congress November 17-18 2020, Adelaide, Australia. Guests editors: Cassandra Collins and Roberta De Bei. OENO One [Internet]. 5 nov 2020 [cité 18 janv 2021];54(4). Disponible sur: https://oeno-one.eu/article/view/3983
4. Van Leeuwen C, Barbe JC, Darriet P, Destrac-Irvine A, Gowdy M, Lytra G, et al. Aromatic maturity is a cornerstone of terroir expression in red wine: This article is published in cooperation with Terclim 2022 (XIVth International Terroir Congress and 2nd ClimWine Symposium), 3-8 July 2022, Bordeaux, France. OENO One. 24 juin 2022;56(2):335-51.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Justine Laboyrie¹, Davide Slagheunaufi², Giovani Luzzini², Maurizio Ugliano², Warren Albertin¹, Laurent Riquier¹, Gilles de Revel¹, Stéphanie Marchand¹.

1. Unité de Recherche Œnologie, UMR 1366 INRAE, ISVV, University of Bordeaux, Bordeaux INP, Villenave d’Ornon, 33882, France
2. University of Verona, Department of Biotechnology, Villa Lebrecht, via della Pieve 70, San Pietro in Cariano, 37029, Italy

Contact the author*

Keywords

Wine identity, Aroma compounds, Terroir, Ageing

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

WINE RACKING IN THE WINERY AND THE USE OF INERT GASES: CONTROL AND OPTIMIZATION OF THE PROCESS

Atmospheric oxygen (O₂) generates oxidation in wines that affect their physicochemical and sensory evolution. The O₂ uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O₂ uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it. The aim was to study the uptake of O₂ during the racking of a model wine as a reference and to compare with purging the destination tank with different inert gases.

VOLATILE, PHENOLIC AND COLORIMETRIC CHARACTERIZATION OF THREE DIFFERENT LAMBRUSCO APPELLATIONS

Lambrusco is a commercially successful sparkling red and rosé wine. With 13.06 million litres sold in 2021 was the second best-selling Italian wine after Chianti. According to National Catalogue of Vine Varieties there are thirteen Lambrusco Varieties with which to date are produced seven PDO wines. Among these, “Lambrusco Salamino di Santa Croce”, “Lambrusco Grasparossa di Castelvetro” and “Lambrusco di Sorbara” are the only ones that can be considered mono-varietal appellations, all located in Modena area. The PDOs contemplate the possibility of producing wines by secondary fermentation either in tank (Charmat method), or in bottle (Classico method). Sur lie is a third method commonly employed for Lambrusco, similar to the Classico method, from which differs for the absence of disgorgement.

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae.