terclim by ICS banner
IVES 9 IVES Conference Series 9 AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

Abstract

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.

Even if the chemical identity of a wine is shaped by a large variety of factors (soil, climate, varieties, microbiology, ageing process), we know now that the terroir and the maturation plays a key role in the sensorial and chemical identity of wines even after ageing (1–4). The aims of that study was to explore the links between terroir, ageing or vintages and the chemical composition. A targeted approach have been tested. It involves the quantification of molecular markers such as esters, terpenes, norisoprenoids or sulphur compounds. It have been applied to a large set of wines composed by 80 samples produced by 7 wineries during a selection of vintages between 1990 to 2007. The statistical analysis of the results permits to highlight similar compositions between wines produced in the same winery despite the variation of berry composition due to the vintage, the variations dues to technical choices and to ageing time. In the current study, the whole volatile composition is essential to the uniqueness of the wines because there are no compounds that are exclusively involved in discrimination of estate. This shows the complex effect of the grape and wine matrix on achieving a typical product. Overall, in the aromatic matrix, there is an existence of a hierarchy in the importance of compounds that permits the unicity of Bordeaux estate. Hence, three families of compounds (terpenes, norisoprenoids and esters) which made it possible to discriminate between the seven Bordeaux estates studied and are therefore influenced by the composition of the grapes. These include TDN, vitispirane, β-damascenone, terpinen-1-ol, α-terpinene, methyl salicylate, cis-linalooxide, ethyl esters of fatty acids (C₄C₂, C₆C₂, C₈C₂) and many others. It’s interesting to note that even after years of bottle ageing, the imprint of the grape is still visible. The personality of each estate through its specific terroir is therefore an indispensable element for the aromatic singularity of each great wine.

 

1. Le Menn N, van Leeuwen C, Picard M, riquier laurent, de Revel G, Marchand S. Effect of vine water and nitrogen status, as well as temperature, on some aroma compounds of aged red Bordeaux wines. J Agric Food Chem. 2 juin 2019;acs.jafc.9b00591.
2. Luzzini G, Slaghenaufi D, Pasetto F, Ugliano M. Influence of grape composition and origin, yeast strain and spontaneous fermentation on aroma profile of Corvina and Corvinone wines. LWT. mai 2021;143:111120.
3. Van Leeuwen C, Barbe JC, Darriet P, Geffroy O, Gomès E, Guillaumie S, et al. Recent advancements in understanding the terroir effect on aromas in grapes and wines: This article is published in cooperation with the XIIIth International Terroir Congress November 17-18 2020, Adelaide, Australia. Guests editors: Cassandra Collins and Roberta De Bei. OENO One [Internet]. 5 nov 2020 [cité 18 janv 2021];54(4). Disponible sur: https://oeno-one.eu/article/view/3983
4. Van Leeuwen C, Barbe JC, Darriet P, Destrac-Irvine A, Gowdy M, Lytra G, et al. Aromatic maturity is a cornerstone of terroir expression in red wine: This article is published in cooperation with Terclim 2022 (XIVth International Terroir Congress and 2nd ClimWine Symposium), 3-8 July 2022, Bordeaux, France. OENO One. 24 juin 2022;56(2):335-51.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Justine Laboyrie¹, Davide Slagheunaufi², Giovani Luzzini², Maurizio Ugliano², Warren Albertin¹, Laurent Riquier¹, Gilles de Revel¹, Stéphanie Marchand¹.

1. Unité de Recherche Œnologie, UMR 1366 INRAE, ISVV, University of Bordeaux, Bordeaux INP, Villenave d’Ornon, 33882, France
2. University of Verona, Department of Biotechnology, Villa Lebrecht, via della Pieve 70, San Pietro in Cariano, 37029, Italy

Contact the author*

Keywords

Wine identity, Aroma compounds, Terroir, Ageing

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

It is a well-established fact that premature oxidation is noxious for wine aromatic quality and longevity. Although some oxidation-related aroma molecules have been previously identified, there are not works carrying out systematic research about the changes in the profiles of odour-active volatiles during wine oxidation.

REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

Nitrogen (N) fertilizer is important for grape growth and the quality of wine. It is essential to address the mismatch between N application and wine composition. Cabernet Gernischt (Vitis vinifera L.), as one of the main wine-grape cultivars in China, was introduced to Yantai wine region in 1892. This grape cultivar is traditionally used for quality dry red wine with fruit, spices aroma, ruby red and full-bodied wines. In order to regulate vine growth and improve grape and wine quality, Cabernet Gernischt grapevines were subjected to decreased levels of N treatments, compared to normal N supply treatment, during grape growing seasons of 2019 and 2020.

NEW TREATMENTS FOR TEMPRANILLO WINES BY USING CABERNET SAUVIGNON VINE-SHOOTS AND MICRO-OXYGENATION

Toasted vine-shoots as enological additive represents a promising topic due to their significant effect on wine profile. However, the use of this new enological tool with SEGs varieties different than wine and combined with others winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far, despite this combination could result in wine with high chemical and organoleptic quality.