terclim by ICS banner
IVES 9 IVES Conference Series 9 IDENTIFICATION OF NEW RESVERATROL DERIVATIVES FORMED IN RED WINE AND THEIR BIOLOGICAL PROPERTIES

IDENTIFICATION OF NEW RESVERATROL DERIVATIVES FORMED IN RED WINE AND THEIR BIOLOGICAL PROPERTIES

Abstract

Stilbenes are natural bioactive polyphenols produced by grapevine. Recently, we have reviewed the natural presence of these compounds in wines [1]. This study showed that the resveratrol and its glycoside, the piceid, are the most abundant stilbenes in wines. Resveratrol is a well-known stilbene with a wide range of biological activities. Due to its specific structure, resveratrol can be oxidized in wines to form various derivatives including oligomers [2]. In this study, we investigate the resveratrol and piceid transformation in wines.

First, the transformations of resveratrol and piceid by oxidative coupling in presence of metals and by photo-oxidation under light exposure were investigated in model solutions. Structural elucidation of oxidative products was obtained by NMR. Secondly, the formation in wines of these compounds was monitored by liquid chromatography coupled with accurate mass spectrometry. The main results will be presented and discussed. Finally, the biological properties of these compounds were evaluated on cell line models. The results will be presented and compared with those obtained with resveratrol.

 

1. Benbouguerra N., Hornedo-Ortega R., Garcia F., El Khawand T., Saucier C., Richard T., Trends in Food Science & Technology, 112, 362-381, 2021
2. El Khawand, T.; Valls Fonayet, J.; Da Costa, G.; Hornedo-Ortega, R.; Jourdes, M.; Franc, C.; Revel, G.; Decendit, A.; Krisa, S.; Richard, T., Food Research International 132, 109068, 2020

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Ayoub Jaa1,2, Anthony Pébarthé-Courrouilh¹, Josep Valls Fonayet¹, Toni El Khawand¹, Stéphanie Krisa¹, Grégory Da Costa¹, Anto-nio Palos Pinto¹, Marie-Laure Iglésias¹, M. Begoña Ruiz-Larrea², José Ignacio Ruiz-Sanz², Stéphanie Cluzet¹, Tristan Richard¹

1. Univ. Bordeaux, Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Free Radicals and Oxidative Stress (FROS) research group of the Department of Physiology, Medicine and Nursing School, University of the Basque Country UPV/EHU, 48940-Leioa, Bizkaia, Spain

Contact the author*

Keywords

Stilbene, resveratrol, oxidative coupling, isomerisation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).

EFFECT OF OXIDATION ON LOW MOLECULAR WEIGHT PHENOLIC FRACTION, SALIVARY PROTEINS PRECIPITATION AND ASTRINGENCY SUBQUALITIES OF RED WINES

Changes in the low molecular weight phenolic fraction, obtained by liquid-liquid microextraction technique, were studied after controlled oxidation of two typologies of Sangiovese wines (Brunello di Montalcino and Chianti Classico) belonging to two vintages (2017 and 2018). The fractions were characterized by LC-MS and quantified by HPLC. The most abundant extracted compounds were the phenolic acids. The effect of oxidation, vintage, and wine typology was stated by a three-ways ANOVA. Gallic and syringic acids significantly increased after oxidation while (–)-epicatechin decreased the most.

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet.

MONOSACCHARIDE COMPOSITION AND POLYSACCHARIDE FAMILIES OF LYOPHILISED EXTRACTS OBTAINED FROM POMACES OF DIFFERENT WHITE GRAPE VARIETIES

The recovery of bioactive compounds from grape and wine by-products is currently an important and necessary objective for sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds such as polyphenols, polysaccharides, fatty acids, minerals and seed oil. Polysaccharides contained in the grape cell wall can be rhamnogalacturonans type II (RG-II), polysaccharides rich in arabinose and galactose (PRAG), mannoproteins (MP), homogalacturonans (HG) and non pectic polysaccharides (NPP).

POTENTIAL DEACIDIFYING ROLE OF A COMMERCIAL CHITOSAN: IMPACT ON PH, TITRATABLE ACIDITY, AND ORGANIC ACIDS IN MODEL SOLUTIONS AND WHITE WINE

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps. The main derivative of chitin is chitosan (CH), produced by N-deacetylation of chitin in alkaline solutions. Over the past decade, the OIV/OENO 338A/ 2009 resolution approved the addition of allergen-free fungoid CH to must and wine as an adjuvant for microbiological control, prevention of haziness, metals chelation and ochratoxins removal (European Commission. 2011). Despite several studies on application of CH in winemaking, there are still very limited and controversial data on its interaction with acidic components in wine (Colan-gelo et al., 2018; Castro Marin et al., 2021).