terclim by ICS banner
IVES 9 IVES Conference Series 9 METHYL SALICYLATE: A TRENDY COMPOUND MARKER OF ZELEN, A UNIQUE SLOVENIAN VARIETY

METHYL SALICYLATE: A TRENDY COMPOUND MARKER OF ZELEN, A UNIQUE SLOVENIAN VARIETY

Abstract

The wine market interest for autochthonous varieties, particularly from less known wine regions, has significantly raised in the past few years. In that context, Slovenia, a small country from central Europe with a long winemaking tradition, is getting more and more attention, particularly through its range of unique regional varieties. Among them, Zelen, meaning “green” in Slovene, can only be found in the Vipava valley region, located on the western side of the country, near the border with Italy. When they are young, Zelen wines display very singular aromas reminiscent of rosemary, sage and white fruit. Despite its uniqueness, Zelen wine aromatic typicality is poorly documented in the literature. The goal of this study was to highlight some potential aromatic markers specific to Zelen in comparison to other international and regional varieties grown in Slovenia. A first batch of 28 white wines from different Slovenian wine regions including 8 Zelen wines, were analysed for their contents in volatile thiols by GC/MS/MS, terpenoids, and untargeted screening by HS/SPME-GC/MS. Thereafter a second batch of 67 wines from Vipava valley including 25 Zelen wines, were analysed for their contents in methyl salicylate and volatile phenols by HS/SPME-GC/MS. The first batch of analyses showed that Zelen had lower content in volatile thiols and higher concentration in some monoterpenols such as linalool in comparison to other varieties. Nevertheless, two com- pounds identified with the untargeted analysis seemed to be particularly important in Zelen wines aro- matic profile: methyl salicylate and 4-vinylguaiacol. The second batch of analysis confirmed this trend with the average concentration of methyl salicylate at 14 µg/L and 3 µg/L in Zelen and other wines respectively. The highest concentration was measured at 38 µg/L in one Zelen wine, which corresponds to the sensory threshold measured in neutral white wines [1]. Methyl salicylate has recently gained some attention as it was found that this compound could contribute to the Italian Verdicchio and Lugana wines aromatic profile [1,2] and to some Bordeaux red wines made under specific conditions [3,4]. Zelen wines also displayed higher concentrations of 4-vinylguaiacol with 30% of Zelen wines having concentrations above the perception threshold reported for white wines [5]. Preliminary sensory investigations suggested that both compounds could potentially contribute to Zelen aromatic typicality.

 

1. Slaghenaufi, D.; Luzzini, G.; Solis, J. S.; Forte, F., Ugliano, M.; Two Sides to One Story—Aroma Chemical and Sensory Signature of Lugana and Verdicchio Wines (2021), Molecules 26: 2127.
2. Carlin, S.; Vrhovsek, U.; Lonardi, A.; Landi L.; Mattivi F., Aromatic complexity in Verdicchio wines: a case study. (2019), OENO One 4: 597-610
3. Pelonnier-Magimel, E.; Lytra, G.; Franc, C.; Farris, L.; Darriet, P.; Barbe, J-C. Methyl Salicylate, an Odor-Active Compound in Bordeaux Red Wines Produced without Sulfites Addition (2022), J. Agric. Food Chem.70: 39
4. Poitou, X.; Redon, P.; Pons, A.; Bruez, E.; Delière, L.; Marchal, A.; Cholet, C.; Geny-Denis, L.; Darriet, P. Methyl salicylate, a grape and wine chemical marker and sensory contributor in wines elaborated from grapes affected or not by cryptogamic diseases. (2021). Food Chem. 360:130120
5. Chatonnet, P.; Dubordieu, D.; Boidron, J-N.; Lavigne, V.; Synthesis of volatile phenols by Saccharomyces cerevisiae in wines (1993). J. Sci. Food Agric. 62(2): 191–202 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Guillaume Antalick¹, Mitja Martelanc¹, Tatjana Radovanović Vukajlović¹, Diana Martin¹, Katja Šuklje², Andreja Vanzo², Klemen Lisjak², Davide Slaghenaufi³ Branka Mozetič Vodopivec¹, Melita Sternad Lemut¹, Lorena Butinar¹

1. University of Nova Gorica, Wine Research Centre, Lanthieri Palace, Glavni trg 8, SI-5271 Vipava, Slovenia
2. Agricultural Institute of Slovenia, Department of Fruit Growing, Viticulture and Oenology, Hacquetova ulica 17, 1000 Ljubl-jana, Slovenia
3. Department of Biotechnology, University of Verona, 37134 Verona, Italy

Contact the author*

Keywords

Zelen, typicality, methyl salicylate, 4-vinylguaiacol

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

SENSORY PROPERTIES IMPORTANT TO AUSTRALIAN FINE WINE CONSUMER SEGMENT PERCEPTION OF CHARDONNAY WINE COMPLEXITY AND PREFERENCE

Wine complexity is considered a multidimensional yet equivocal sensory percept. This project uncovered sensory attributes Australian Chardonnay wine consumers associate with Chardonnay wine complexity
and correlations between expert and consumer perceived wine complexity and preference. A
wine consumer test examined 6 Australian Chardonnay wines of three complexity levels designated low (LC1&2), medium (MC1&2), and high (HC1&2) by an expert panel (n = 8) using a benchtop sensory task. Consumers (n = 81) rated their perceived liking using a 9-point hedonic scale; wine complexity with a 5-point scale anchored “low”, “low-medium”, “medium”, “medium-high”, and “high” and lastly, profiled the wines using Rate-All-That-Apply (RATA). Psychographic segmentation with the Fine Wine Instrument
(FWI) generated three segments; Wine Enthusiasts (WE n=29), Aspirants (ASP n=40) and No- Frills (NF n=12).

HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

Wine varietal aroma is the result of a mixture of compounds formed or liberated from specific grape-aroma precursors. Their liberation/formation from their specific precursors can occur spontaneously by acid catalyzed rearrangements or hydrolysis or by the action of the yeast enzymatic activities. The influence of yeast during fermentation on the production of these volatile compounds has been widely studied however, the effect of this influence during aging is not fully understood. In order to evaluate these processes several indirect strategies have been used to study aroma precursors although they are not useful to understand the chemistry of the process.

YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

Botrytis cinerea Pers., the causal agent of grey mould disease, is responsible for substantial economic losses, as it causes reduction of grape and wine quality and quantity. Exploitation of antagonistic yeasts is a promising strategy for controlling grey mould incidence and limiting the usage of synthetic fungicides. In our previous studies, 119 different indigenous yeasts were screened for putative multidimensional modes of action against filamentous fungus B. cinerea [1]. The most promissing biocontrol yeast was Pichia guilliermondii ZIM624, which exhibited several anatagonistic traits (production of cell wall degrading enzymes, chitinase and β-1,3-glucanase; demonstration of in vitro inhibitory effect on B. cinerea mycelia radial growth; production of antifungal volatiles, assimilation of a broad diversity of carbon sources, contributing to its competitivnes in inhabiting grapes in nature).

EXPLORING THE METABOLIC AND PHENOTYPIC DIVERSITY OF INDIGENOUS YEASTS ISOLATED FROM GREEK WINE

Climate change leads to even more hostile and stressful for the wine microorganism conditions and consequently issues with fermentation rate progression and off-character formation are frequently observed. The objective of the current research was to classify a great collection of yeast isolates from Greek wines based on their technological properties with oenological interest. Towards this direction, fourteen spontaneously fermented wines from different regions of Greece were collected for further yeast typing. The yeast isolates were subjected in molecular analyses and identification at species level.