terclim by ICS banner
IVES 9 IVES Conference Series 9 PROGRESS OF STUDIES OF LEES ORIGINATING FROM THE FIRST ALCOHOLIC FERMENTATION OF CHAMPAGNE WINES

PROGRESS OF STUDIES OF LEES ORIGINATING FROM THE FIRST ALCOHOLIC FERMENTATION OF CHAMPAGNE WINES

Abstract

Champagne wines are produced via a two-step process: the first is an initial alcoholic fermentation of grape must that produces a still base wine, followed by a second fermentation in bottle – the prise de mousse – that produces the effervescence. This appellation produces non-vintage sparkling wines composed of still base wines assembled from different vintages, varieties, and regions. These base wines, or “reserve wines,” are typically conserved on their fine lies and used to compensate for quality variance between vintages (1). Continuously blending small amounts of these reserve wines into newer ones also facilitates preserving the producer’s “house style.” Some of these wines therefore possess the potential to age and maintain their organoleptic quality for even decades. Despite this potential, while the prise de mousse and final product have been extensively studied, far less research has been realised on the Champagne base wines and lies.

The aim of our ongoing study is to apply a multi-disciplinary strategy to study Champagne base wine lies. First, lies production was standardized on a laboratory scale at differing volumes (125 mL, 1 L, 5 L) for both synthetic solutions modelled on Champagne grape musts, and actual musts originating from the region. Confocal microscopy was then utilised to observe yeasts cells present in the wines and lees, as well as any enzymatic activity, creating a visual reference of autolytic dynamics over a one-year period. Simultaneously, these solutions were analysed for volatile odorous compounds and their precursors, including dimethyl sulphide (DMS,) monoterpenes, and heterocycles. Particular attention was given to amino acid concentrations, as previous studies show the importance of lees and amino acid content on ageing potential of reserve wines(2). Initial results show a dynamic evolution of volatile compounds in the early stages of aging, highlighting the potential contribution of lies to the longevity of still base wines. In addition, chemical analyses revealed unexpected data concerning the production of DMS in wines. This tandem approach allowed a preliminary analysis of Champagne reserve wine kinetics and the corresponding release of volatile compounds during the initial stages of lees aging.

 

1. Le Menn N, Marchal R, Demarville D, Casenave P, Tempere S, Campbell-Sills H, et al. Development of a new sensory analysis methodology for predicting wine aging potential. Application to champagne reserve wines. Food Qual Prefer. 2021;94.
2. Le Menn N, Marchand S, De Revel G, Demarville D, Laborde D, Marchal R. N,S,O-Heterocycles in Aged Champagne Reserve Wines and Correlation with Free Amino Acid Concentrations. J Agric Food Chem. 2017;65(11):2345-56. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Sera Goto1, 2; Nicolas Le Menn1, 2; Marina Bely¹; Laura Chasseriaud ¹; Stephani Marchand ¹

1. Université de Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France
2. Champagne Veuve Clicquot, 13 rue Albert Thomas, 51100 Reims, France

Contact the author*

Keywords

Champagne, Lees, Fermentation, Aroma

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

During bottle aging, the development of wine aroma through low and gradual oxygen exposure is often positive in red wines, but can be unfavorable in many cases, resulting in a rapid loss of fresh, fruity flavors. Prematurely aged wines are marked by intense prune and fig aromatic nuances that dominate the desirable bouquet achieved through aging (Pons et al., 2013). This aromatic defect, in part, is caused by the presence of 3-methyl-2,4-nonanedione (MND). MND content was shown to be lower in nonoxidized red wines and higher in oxidized red wines, which systematically exceeds the odor detection threshold (62 ng/L).

TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

Tartrate precipitation affects the properties of wines, due to the formation of crystals that cause turbidity, even after being bottled. The forced tartaric stabilization is carried out frequently for young wines, through various physicochemical procedures. The traditional treatment for tartaric stabilization is refrigeration, but it can have a negative effect on wine’s sensory properties, and particularly on the color of red wines. The aim of this study was to evaluate the effect of different tartaric stabilization options on the color and phenolic composition of Tannat red wines from Uruguay.

FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

The complexity of the wine matrix makes the monitoring of the winemaking process crucial. Fourier Transform Infrared Spectroscopy (FTIR) along with chemometrics is considered an effective analytical tool combining good accuracy, robustness, high sample throughput, and “green character”. Portable and non-portable FTIR devices are already used by the wine industry for routine analysis. However, the analytical calibrations need to be enriched, and some others are still waiting to be thoroughly developed.

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).