terclim by ICS banner
IVES 9 IVES Conference Series 9 PROGRESS OF STUDIES OF LEES ORIGINATING FROM THE FIRST ALCOHOLIC FERMENTATION OF CHAMPAGNE WINES

PROGRESS OF STUDIES OF LEES ORIGINATING FROM THE FIRST ALCOHOLIC FERMENTATION OF CHAMPAGNE WINES

Abstract

Champagne wines are produced via a two-step process: the first is an initial alcoholic fermentation of grape must that produces a still base wine, followed by a second fermentation in bottle – the prise de mousse – that produces the effervescence. This appellation produces non-vintage sparkling wines composed of still base wines assembled from different vintages, varieties, and regions. These base wines, or “reserve wines,” are typically conserved on their fine lies and used to compensate for quality variance between vintages (1). Continuously blending small amounts of these reserve wines into newer ones also facilitates preserving the producer’s “house style.” Some of these wines therefore possess the potential to age and maintain their organoleptic quality for even decades. Despite this potential, while the prise de mousse and final product have been extensively studied, far less research has been realised on the Champagne base wines and lies.

The aim of our ongoing study is to apply a multi-disciplinary strategy to study Champagne base wine lies. First, lies production was standardized on a laboratory scale at differing volumes (125 mL, 1 L, 5 L) for both synthetic solutions modelled on Champagne grape musts, and actual musts originating from the region. Confocal microscopy was then utilised to observe yeasts cells present in the wines and lees, as well as any enzymatic activity, creating a visual reference of autolytic dynamics over a one-year period. Simultaneously, these solutions were analysed for volatile odorous compounds and their precursors, including dimethyl sulphide (DMS,) monoterpenes, and heterocycles. Particular attention was given to amino acid concentrations, as previous studies show the importance of lees and amino acid content on ageing potential of reserve wines(2). Initial results show a dynamic evolution of volatile compounds in the early stages of aging, highlighting the potential contribution of lies to the longevity of still base wines. In addition, chemical analyses revealed unexpected data concerning the production of DMS in wines. This tandem approach allowed a preliminary analysis of Champagne reserve wine kinetics and the corresponding release of volatile compounds during the initial stages of lees aging.

 

1. Le Menn N, Marchal R, Demarville D, Casenave P, Tempere S, Campbell-Sills H, et al. Development of a new sensory analysis methodology for predicting wine aging potential. Application to champagne reserve wines. Food Qual Prefer. 2021;94.
2. Le Menn N, Marchand S, De Revel G, Demarville D, Laborde D, Marchal R. N,S,O-Heterocycles in Aged Champagne Reserve Wines and Correlation with Free Amino Acid Concentrations. J Agric Food Chem. 2017;65(11):2345-56. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Sera Goto1, 2; Nicolas Le Menn1, 2; Marina Bely¹; Laura Chasseriaud ¹; Stephani Marchand ¹

1. Université de Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France
2. Champagne Veuve Clicquot, 13 rue Albert Thomas, 51100 Reims, France

Contact the author*

Keywords

Champagne, Lees, Fermentation, Aroma

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine.

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.

OENOLOGICAL POTENTIAL OF AUTOCHTHONOUS SACCHAROMYCES CEREVISIAE STRAINS AND THEIR EFFECT ON THE PRODUCTION OF TYPICAL SAVATIANO WINES

Due to the global demand for terroir wines, the winemaking industry has focused attention on exploiting the local yeast microflora of each wine growing region to express the regional character and enhance the sensory profile of wines such as varietal typicity and aroma complexity. The objective of the present study was to isolate and compare the indigenous strains of Saccharomyces cerevisiae present in different vineyards in the Mesogeia – Attiki wine region (Greece), evaluate their impact on chemical composition and sensory profile of Savatiano wines and select the most suitable ones for winemaking process.

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet.

WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

Malolactic fermentation (MLF) is a desired process in red and acidic white wines, after alcoholic fermentation (AF), carried out by the lactic acid bacterium (LAB) Oenococcus oeni. The advantages are an increase of pH, microbiological stabilization and organoleptic improvement of the final wine. However, the presence of stress factors such as ethanol, low pH, high total SO2, lack of nutrients and presence of inhibitors, could affect the successful completion of MLF [1]. Changes in amino acid composition and deficiencies in peptides after AF, showed that MLF can be delayed, signaling its importance for bacterial growth and L-malic acid degradation during MLF [2].