OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Different strategies for the rapid detection of Haze‐Forming Proteins (HFPs)

Different strategies for the rapid detection of Haze‐Forming Proteins (HFPs)

Abstract

Over the last decades, wine analysis has become an important analytical field, with emphasis placed on the development of new methodologies for characterization and elaboration control. Advances in wine chemistry knowledge allow the relation of specific wine faults or defects to the compounds responsible for those unpleasant characteristics. In most cases, those compounds are already naturally present in wine, but their effect does only become noticeable when their concentration exceeds the “sensory threshold”. 

Among the different instabilities that can occur, protein haze formation is a serious quality defect because consumers perceive hazy wines as “spoiled” [1]. Protein haze is caused by aggregation of residual grape pathogenesis-related proteins, particularly, thaumatin-like proteins and chitinases upon exposure to elevated temperatures during storage or transportation. Unfortunately, a specific method for the detection, or treatment, of such proteins in affected wines does not exist, and current practice is to use fining agents such as bentonite for their removal. On the one side, this might have a negative impact on wine quality, as not only haze forming proteins (HFPs) are being removed, but also other compounds that do impact on wine flavour/ aroma. On the other side, the lack of a specific method to quantify HFPs, tends to result in over-fining, which in turn has a more detrimental impact in wine quality, fining cost and waste generation. 

Herein we investigate on the development of an easy‐to‐use sensory device that allows to detect the presence of HFPs. To this aim, three different approaches have been explored. 

On the one hand, two different impedimetric biosensors based on screen-printed electrodes were developed, and their performance assessed towards standard solutions as well as wine samples. As an alternative, Fourier Transform Infrared (FT-IR) spectra were collected for different wine samples and chemometric tools such as discrete wavelet transform (DWT) and artificial neural networks (ANNs) were used to achieve the quantification of HFPs proteins. Detection of HFPs at the μg/L level has been achieved with both impedimetric biosensors in standard solutions, whereas the FT-IR-based approach allowed their quantification at the mg/L level in wine samples directly. 

[1] S.C. Van Sluyter, et al. J. Agr. Food Chem., 63 (2015) 4020-4030.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Xavier Cetó, Jacqui M McRae, Nicolas H. Voelcker, Beatriz Prieto-Simón

The Australian Wine Research Institute, P.O Box 197, Glen Osmond, SA 5064, Australia
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain
Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain

Contact the author

Keywords

haze-forming proteins, biosensor, FT-IR, chemometric analysis 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Enological characters of thirty vines in four different zones of Tuscany

In the last few years the development of HPLC techniques together with multivariate statistical methods allowed to set methodics of large discriminant and classing efficacy in the study of wine-grapes.

INCREASING PINOT NOIR COLOUR DENSITY THROUGH SEQUENTIAL INOCULATION OF FLOCCULENT COMMERCIAL WINE YEAST SPECIES

Vitis vinifera L. cv. Pinot noir can be challenging to manage in the winery as its thin skins require careful handling to ensure sufficient extraction of wine colour to promote colour stability during ageing.1 Literature has shown that fermentation with flocculent yeasts can increase red wine colour density.2 As consumers prefer greater colour density in red wines,3 the development of tools to increase colour density would be useful for the wine industry. This research explored the impact of interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine colour.

Gamay And Gamaret Winemaking Processes Using Stems: Impact On The Wine Aromatic Composition.

Stems may bring various benefits to the wine such as alcoholic reduction, color protection or improvement of the tannic intensity.

The sensory features of the landscapes

When someone watches a hilly landscape, the image beauty creates emotions and frames of mind not easily forgettable, but sometimes man’s intervention by means of soil movement and reduction of the natural biodiversity can significantly modify the landscape and consequently the above-mentioned emotions. One speculates if sensory appreciation of a wine may be strongly affected by psychological factor: landscape beauty.

Tolerance to sunburn: a variable to consider in the context of climate change

Climate change effects on grapevine phenology and grape primary and secondary metabolites are well described in recent literature. Increasing frequency and intensity of heat waves may be responsible for important yield losses in the future. However, the impact of this event is not so well described in literature. The present study highlights the importance of grape variety tolerance as a mitigation tool to climate change.