OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Different strategies for the rapid detection of Haze‐Forming Proteins (HFPs)

Different strategies for the rapid detection of Haze‐Forming Proteins (HFPs)

Abstract

Over the last decades, wine analysis has become an important analytical field, with emphasis placed on the development of new methodologies for characterization and elaboration control. Advances in wine chemistry knowledge allow the relation of specific wine faults or defects to the compounds responsible for those unpleasant characteristics. In most cases, those compounds are already naturally present in wine, but their effect does only become noticeable when their concentration exceeds the “sensory threshold”. 

Among the different instabilities that can occur, protein haze formation is a serious quality defect because consumers perceive hazy wines as “spoiled” [1]. Protein haze is caused by aggregation of residual grape pathogenesis-related proteins, particularly, thaumatin-like proteins and chitinases upon exposure to elevated temperatures during storage or transportation. Unfortunately, a specific method for the detection, or treatment, of such proteins in affected wines does not exist, and current practice is to use fining agents such as bentonite for their removal. On the one side, this might have a negative impact on wine quality, as not only haze forming proteins (HFPs) are being removed, but also other compounds that do impact on wine flavour/ aroma. On the other side, the lack of a specific method to quantify HFPs, tends to result in over-fining, which in turn has a more detrimental impact in wine quality, fining cost and waste generation. 

Herein we investigate on the development of an easy‐to‐use sensory device that allows to detect the presence of HFPs. To this aim, three different approaches have been explored. 

On the one hand, two different impedimetric biosensors based on screen-printed electrodes were developed, and their performance assessed towards standard solutions as well as wine samples. As an alternative, Fourier Transform Infrared (FT-IR) spectra were collected for different wine samples and chemometric tools such as discrete wavelet transform (DWT) and artificial neural networks (ANNs) were used to achieve the quantification of HFPs proteins. Detection of HFPs at the μg/L level has been achieved with both impedimetric biosensors in standard solutions, whereas the FT-IR-based approach allowed their quantification at the mg/L level in wine samples directly. 

[1] S.C. Van Sluyter, et al. J. Agr. Food Chem., 63 (2015) 4020-4030.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Xavier Cetó, Jacqui M McRae, Nicolas H. Voelcker, Beatriz Prieto-Simón

The Australian Wine Research Institute, P.O Box 197, Glen Osmond, SA 5064, Australia
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain
Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain

Contact the author

Keywords

haze-forming proteins, biosensor, FT-IR, chemometric analysis 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

PINKING PHENOMENA ON WHITE WINES: RELATION BETWEEN PINKING SUSCEPTIBILITY INDEX (PSI) AND WINE ANTHOCYANINS CONTENT

Pinking is the emergence of pink tones in white wines exclusively produced from white grape varieties, known as pinking phenomena for many years. Pinking is essentially appeared when white wines are produced under reducing conditions [1,2,3]. Pinking usually occurs after bottling and storage of white wines, but its appearance has also been described after alcoholic fermentation or even as soon as the grape must is extracted [4]. Therefore, the purpose of this work was to investigate the existence of an-thocyanins in white wines made from different white grape varieties and grown locations and critically evaluate the most common method used for predicting pinking appearance in white wines: the Pinking Susceptibility Index (PSI).

Flooding responses on grapevine: a physiological, transcriptional and metabolic perspective

Studies on model plants have shown that temporary soil flooding exposes roots to a significant hypoxic stress resulting in metabolic re-programming, accumulation of toxic metabolites and hormonal imbalance. To date, physiological and transcriptional responses to flooding in grapevine are poorly characterized. To fill this gap, we aimed to gain insights into the transcriptional and metabolic changes induced by flooding on grapevine roots (K5BB rootstocks), on which cv Sauvignon blanc (Vitis vinifera L.) plants were grafted.

Water deficit differentially impacts the performances and the accumulation of grape metabolites of new varieties tolerant to fungi

The use of resistant varieties is a long-term but promising solution to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are now releasing a range of new hybrids performing well regarding fungi susceptibility and producing good quality wines. Unfortunately, insufficient attention is paid by the breeders to the adaptation of these varieties to climatic changes, notably to the increased climatic demand and water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD. This study aimed to characterize the different drought-strategies adopted by 6 new resistant varieties selected by INRAE in comparison to Syrah. To allow the assessment of long-term impacts of WD, field-grown vines were exposed to contrasted WD from 2018 to 2021 under a semi-arid Mediterranean climate. A gradient of WD was applied in the field and controlled through plant measurements at the single plant level. Grape development was non-destructively monitored to determine the arrest of berry phloem unloading. The impacts of WD on berry composition, including water, primary metabolites (sugars, organic acids), secondary metabolites (anthocyanins, thiols precursors) and main cations contents, were assessed at this specific stage. Results showed different varietal responses during the year and inter-annual acclimation in terms of plant water use efficiency, biomass accumulation, as well as yield components and berry composition. WD differentially reduced the accumulation of primary metabolites at plant and berry levels, but it little changed their concentrations in the fruits at the ripe stage. Moreover, WD differentially impacted the accumulation of secondary metabolites and major cations between the varieties. In the talk, we’ll present the main results regarding the WD impacts on fruit metabolites and enlarge the reflection about the practical assessment of the grapevine acclimation to WD.

Factors affecting flavonols instability of red wines due to climate change

Due to varietal factors, the formation of undesirable deposits of flavonols, especially quercetin (Q), occurs in several red wines.

Wine industry, digital transformation, and sustainability: a systematic literature 

This paper aims to (i) identify the state of the art regarding digital transformation in the transition to sustainability in the wine industry, (ii) analyze the adoption of digital technologies at different stages of the winemaking process and their contribution to the triple bottom line of sustainability, and (iii) present a research agenda that facilitates the development of the field, providing contributions to both literature and managerial practice.