OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Different strategies for the rapid detection of Haze‐Forming Proteins (HFPs)

Different strategies for the rapid detection of Haze‐Forming Proteins (HFPs)

Abstract

Over the last decades, wine analysis has become an important analytical field, with emphasis placed on the development of new methodologies for characterization and elaboration control. Advances in wine chemistry knowledge allow the relation of specific wine faults or defects to the compounds responsible for those unpleasant characteristics. In most cases, those compounds are already naturally present in wine, but their effect does only become noticeable when their concentration exceeds the “sensory threshold”. 

Among the different instabilities that can occur, protein haze formation is a serious quality defect because consumers perceive hazy wines as “spoiled” [1]. Protein haze is caused by aggregation of residual grape pathogenesis-related proteins, particularly, thaumatin-like proteins and chitinases upon exposure to elevated temperatures during storage or transportation. Unfortunately, a specific method for the detection, or treatment, of such proteins in affected wines does not exist, and current practice is to use fining agents such as bentonite for their removal. On the one side, this might have a negative impact on wine quality, as not only haze forming proteins (HFPs) are being removed, but also other compounds that do impact on wine flavour/ aroma. On the other side, the lack of a specific method to quantify HFPs, tends to result in over-fining, which in turn has a more detrimental impact in wine quality, fining cost and waste generation. 

Herein we investigate on the development of an easy‐to‐use sensory device that allows to detect the presence of HFPs. To this aim, three different approaches have been explored. 

On the one hand, two different impedimetric biosensors based on screen-printed electrodes were developed, and their performance assessed towards standard solutions as well as wine samples. As an alternative, Fourier Transform Infrared (FT-IR) spectra were collected for different wine samples and chemometric tools such as discrete wavelet transform (DWT) and artificial neural networks (ANNs) were used to achieve the quantification of HFPs proteins. Detection of HFPs at the μg/L level has been achieved with both impedimetric biosensors in standard solutions, whereas the FT-IR-based approach allowed their quantification at the mg/L level in wine samples directly. 

[1] S.C. Van Sluyter, et al. J. Agr. Food Chem., 63 (2015) 4020-4030.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Xavier Cetó, Jacqui M McRae, Nicolas H. Voelcker, Beatriz Prieto-Simón

The Australian Wine Research Institute, P.O Box 197, Glen Osmond, SA 5064, Australia
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain
Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain

Contact the author

Keywords

haze-forming proteins, biosensor, FT-IR, chemometric analysis 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Adaptation and resilience of scions and rootstocks to water constraint? It’s complicated and requires an integrated approach

The ability, and the underlying mechanisms of grapevines to cope with and adapt to recurring water constraints, are the focuses of this study.

Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Water availability is the most limiting factor for vineyard productivity under Mediterranean conditions. Due to the effects caused by the current climate change, wine-growing regions may face serious soil moisture conservation problems, due to the lower water retention capacity of the soil and higher soil irradiation. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETo) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on berry phenolic composition at harvest.

Desorption of phenolic compounds bound to lees by combining hydrolytic enzymes and ultrasounds

he final concentration of phenolic compounds in the wines is usually lower than what might be expected given the phenolic concentration measured in grapes

Protein extracts of the Andean pseudocereals quinoa and kiwicha as alternatives for the fining of wine phenolics.

INTRODUCTION: Lately, there has been an increasing interest in using plant-derived proteins for wine phenolic fining.

Monitoring early rooting behavior of grapevine rootstocks: a 2D-imaging approach

The plasticity of grapevines in response to diverse growing conditions is influenced, among other factors, by the extent to which the roots explore the soil and the ability to accumulate and retrieve water and nutrients.
Newly planted grapevines, in particular, face challenges due to limited resources. The young plant’s ability for a fast and intensive penetration of the soil is vital in periods of water scarcity. The selection of an appropriate, site-specific rootstock significantly impacts both, the quality of the fruit produced and the economic success of the wine estate.