OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Different strategies for the rapid detection of Haze‐Forming Proteins (HFPs)

Different strategies for the rapid detection of Haze‐Forming Proteins (HFPs)

Abstract

Over the last decades, wine analysis has become an important analytical field, with emphasis placed on the development of new methodologies for characterization and elaboration control. Advances in wine chemistry knowledge allow the relation of specific wine faults or defects to the compounds responsible for those unpleasant characteristics. In most cases, those compounds are already naturally present in wine, but their effect does only become noticeable when their concentration exceeds the “sensory threshold”. 

Among the different instabilities that can occur, protein haze formation is a serious quality defect because consumers perceive hazy wines as “spoiled” [1]. Protein haze is caused by aggregation of residual grape pathogenesis-related proteins, particularly, thaumatin-like proteins and chitinases upon exposure to elevated temperatures during storage or transportation. Unfortunately, a specific method for the detection, or treatment, of such proteins in affected wines does not exist, and current practice is to use fining agents such as bentonite for their removal. On the one side, this might have a negative impact on wine quality, as not only haze forming proteins (HFPs) are being removed, but also other compounds that do impact on wine flavour/ aroma. On the other side, the lack of a specific method to quantify HFPs, tends to result in over-fining, which in turn has a more detrimental impact in wine quality, fining cost and waste generation. 

Herein we investigate on the development of an easy‐to‐use sensory device that allows to detect the presence of HFPs. To this aim, three different approaches have been explored. 

On the one hand, two different impedimetric biosensors based on screen-printed electrodes were developed, and their performance assessed towards standard solutions as well as wine samples. As an alternative, Fourier Transform Infrared (FT-IR) spectra were collected for different wine samples and chemometric tools such as discrete wavelet transform (DWT) and artificial neural networks (ANNs) were used to achieve the quantification of HFPs proteins. Detection of HFPs at the μg/L level has been achieved with both impedimetric biosensors in standard solutions, whereas the FT-IR-based approach allowed their quantification at the mg/L level in wine samples directly. 

[1] S.C. Van Sluyter, et al. J. Agr. Food Chem., 63 (2015) 4020-4030.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Xavier Cetó, Jacqui M McRae, Nicolas H. Voelcker, Beatriz Prieto-Simón

The Australian Wine Research Institute, P.O Box 197, Glen Osmond, SA 5064, Australia
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain
Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain

Contact the author

Keywords

haze-forming proteins, biosensor, FT-IR, chemometric analysis 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

Wine aroma analysis can be done by sensorial or instrumental analysis, the latter involving several me-thodologies based on olfactometric detection, electronic noses or gas chromatography. Gas Chromatography has been widely used for the study of the volatile composition of wines and depending on the detection system coupled to the chromatographic system, quantification and identification of individual compounds can be achieved.

Optical visualization of embolism spread in drought‐induced leaves: revealing differences across three grapevine genotypes

‐Evaluation of xylem embolism is an important challenge in identifying drought tolerant genotypes within the context of climate change.

The terroir of Carnuntum: investigation of the physiogeographic characteristics and interdisciplinary study of viticultural functions of the Carnuntum wine district, Austria

During a three-year period, the vineyards of the Carnuntum wine district are investigated for their terroir characteristics. The interdisciplinary study is aimed at the description of the physiogeographic

Weather classification over the Western Cape (February, 1996 – 2000) and viticultural implications in the Stellenbosch wine district

Une étude préliminaire des situations météorologiques journalières a été réalisée pour l’Afrique du Sud et pour les mois de février (période de maturation des raisins dans la Province occidentale du Cap), à l’image de la classification synoptique réalisée aux latitudes tempérées en France (Jones & Davis, 2000), afin d’étudier les relations entre le climat et la viticulture à des latitudes plus basses.

Definition of functional indicators of the vine to characterize wine terroirs

La caractérisation des terroirs viticoles est traditionnellement basée sur des descripteurs de la géologie et de la pédologie des différents milieux rencontrés, couplées à des données climatiques