OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analytical developments from grape to wine, spirits : omics, chemometrics approaches… 9 Different strategies for the rapid detection of Haze‐Forming Proteins (HFPs)

Different strategies for the rapid detection of Haze‐Forming Proteins (HFPs)

Abstract

Over the last decades, wine analysis has become an important analytical field, with emphasis placed on the development of new methodologies for characterization and elaboration control. Advances in wine chemistry knowledge allow the relation of specific wine faults or defects to the compounds responsible for those unpleasant characteristics. In most cases, those compounds are already naturally present in wine, but their effect does only become noticeable when their concentration exceeds the “sensory threshold”. 

Among the different instabilities that can occur, protein haze formation is a serious quality defect because consumers perceive hazy wines as “spoiled” [1]. Protein haze is caused by aggregation of residual grape pathogenesis-related proteins, particularly, thaumatin-like proteins and chitinases upon exposure to elevated temperatures during storage or transportation. Unfortunately, a specific method for the detection, or treatment, of such proteins in affected wines does not exist, and current practice is to use fining agents such as bentonite for their removal. On the one side, this might have a negative impact on wine quality, as not only haze forming proteins (HFPs) are being removed, but also other compounds that do impact on wine flavour/ aroma. On the other side, the lack of a specific method to quantify HFPs, tends to result in over-fining, which in turn has a more detrimental impact in wine quality, fining cost and waste generation. 

Herein we investigate on the development of an easy‐to‐use sensory device that allows to detect the presence of HFPs. To this aim, three different approaches have been explored. 

On the one hand, two different impedimetric biosensors based on screen-printed electrodes were developed, and their performance assessed towards standard solutions as well as wine samples. As an alternative, Fourier Transform Infrared (FT-IR) spectra were collected for different wine samples and chemometric tools such as discrete wavelet transform (DWT) and artificial neural networks (ANNs) were used to achieve the quantification of HFPs proteins. Detection of HFPs at the μg/L level has been achieved with both impedimetric biosensors in standard solutions, whereas the FT-IR-based approach allowed their quantification at the mg/L level in wine samples directly. 

[1] S.C. Van Sluyter, et al. J. Agr. Food Chem., 63 (2015) 4020-4030.

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Xavier Cetó, Jacqui M McRae, Nicolas H. Voelcker, Beatriz Prieto-Simón

The Australian Wine Research Institute, P.O Box 197, Glen Osmond, SA 5064, Australia
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain
Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain

Contact the author

Keywords

haze-forming proteins, biosensor, FT-IR, chemometric analysis 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.

Measuring elemental sulfur in grape juice in relation to varietal thiol formation in Sauvignon blanc wines.

Aim: Sauvignon blanc displays a range of styles that can include prominent tropical and passionfruit aromas. Both sensory evaluation and chemical analysis have confirmed the above-average presence of ‘varietal thiols’ in the Sauvignon blanc wines from Marlborough, New Zealand.

Research on the origin and the side effects of chitosan stabilizing properties in wine

Fungal chitosan is a polysaccharide made up of glucosamine and N-acetyl-glucosamine and derived from chitin-glucan of Aspergillus niger or Agaricus bisporus. Fungal chitosan has been authorized as an antiseptic agent in wine since 2009 (OIV) and in organic wine in 2018. At the maximum dose of 10g/hl, it was shown to eliminate Brettanomyces bruxellensis, the main spoilage agent in red wines. Fungal chitosan is highly renewable, biocompatible (ADI equivalent to sucrose) and non-allergenic. However, winemakers often prefer to use sulfites (SO2), though sulfites are classified as priority food allergens, than chitosan. Indeed, many conflicting reports exist regarding its efficiency and its side effects towards beneficial wine microorganisms or wine taste. These contradictions could be explained by the heterogeneity of the fungal chitosan lots traded, the diversity of the wines (chemical composition, winemaking process), but also, by the recently highlighted huge genetic diversity prevailing in wine microbial species.

Wine tourism in southern Italy: A surge in popularity and economic impact

Wine tourism has transformed from a leisure activity into a crucial part of the tourist experience, significantly contributing to rural tourism’s expansion in italy. It has witnessed a notable surge in popularity in recent years, evolving as a key motivator for travel (antonioli corigliano, 2002; brunori & rossi, 2000; città del vino & censis servizi, 2011; garibaldi, 2018; 2019a; 2020; montanari, 2009; romano & natilli, 2009). The allure of wine tourism, driven by sensory experiences and cultural immersion, continues to attract a diverse group of tourists. The economic impact is substantial, with events and festivals contributing approximately €2.5 billion annually.

Influence of grapevine rootstock/scion combination on rhizosphere and root endophytic microbiomes

Soil is a reservoir of microorganisms playing important roles in biogeochemical cycles and interacting with plants whether in the rhizosphere or in the root endosphere. The composition of the microbial communities thus impacts the plant health. Rhizodeposits (such as sugar, organic and amino acids, secondary metabolites, dead root cells …) are released by the roots and influence the communities of rhizospheric microorganisms, acting as signaling compounds or carbon sources for microbes. The composition of root exudates varies depending on several factors including genotypes. As most of the cultivated grapevines worldwide are grafted plants, the aim of this study was to explore the influence of rootstock and scion genotypes on the microbial communities of the rhizosphere and the root endosphere. The work was conducted in the GreffAdapt plot (55 rootstocks x 5 scions), in which the 275 combinations have been planted into 3 blocks designed according to the soil resistivity. Samples of roots and rhizosphere of 10 scion x rootstock combinations were first collected in May among the blocks 2 and 3. The quantities of bacteria, fungi and archaea have been assessed in the rhizosphere by quantitative PCR, and by cultivable methods for bacteria and fungi. The communities of bacteria, fungi and arbuscular mycorrhizal fungi (AMF) was analyzed by Illumina sequencing of 16S rRNA gene, ITS and 28S rRNA gene, respectively. The level of mycorrhization was also evaluated using black ink coloration of newly formed roots harvested in October. The level of bacteria, fungi and archaea was dependent on rootstock and scion genotypes. A block effect was observed, suggesting that the soil characteristics strongly influenced the microorganisms from the rhizosphere and root endosphere. High-throughput sequencing of the different target genes showed different communities of bacteria, fungi and AMF associated with the scion x rootstock combinations. Finally, all the combinations were naturally mycorrhized. The root mycorrhization intensity was influenced by the rootstock genotype, but not by the scion one. Altogether, these results suggest that both rootstock and scion genotypes influence the rhizosphere and root endophytic microbiomes. It would be interesting to analyze the biochemical composition of the rhizodeposition of these genotypes for a better understanding of the processes involved in the modulation of these microbiomes. Moreover, crossing our data with the plant agronomic characteristics could provide insights into their roles on plant fitness.