terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Abstract

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products. This method aims to provide an accurate approximation of condensed tannin levels, similar to the widely used precipitation assay that involves the polysaccharide polymer methyl cellulose. The new tannin approximation is based on the strong correlation observed between Total Polyphenol Index (TPI) and methyl cellulose precipitable (MCP) tannin assay as both are determined at 280 nm, and using the epicatechin calibration is possible to obtain a value that is equivalent to condensed tannins determined by MCP tannin assay. Thus far, the results have shown a strong correlation between this new method and MCP tannin assay, with an r2 value of 0.83 and a sample size of 60. The present study has included wines from diverse geographical locations and varying ages. In addition to quantifying condensed tannins, the study also aimed to explore potential correlations that may explain differences found in the wines by analysing other polyphenolic parameters. These parameters included catechins determined via the DMACA reaction, anthocyanins based on their structural transformation arising from a change in pH, total polyphenols measured using the Folin-Ciocalteu reaction, TPI, and the chromatic features of wines at 420, 520 and 620 nm. Moreover, the study incorporated analyses of pH, total acidity, and ethanol content to obtain a comprehensive understanding of the wines’ chemical composition. Noteworthy, the study is expanding the sampling to consider more matrices within the winemaking process.

All of the aforementioned parameters, including the condensed tannin, were determined automatically using the BioSystems SPICA® analyzer. The technical simplicity of automated methods for phenolic evaluation, will lead to enhanced efficiency, robustness, and accuracy. Furthermore, these automated methods may facilitate greater field applications, leading to increased profitability and an opportunity to improve wine quality.

 

1. Vignault A, González-Centeno MR, Pascual O, Gombau J, Jourdes M, Moine V, et al. Chemical characterization, antioxidant properties and oxygen consumption rate of 36 commercial oenological tannins in a model wine solution. Food Chem. 2018 Dec 1;268:210–9.
2. Gutiérrez-Escobar R, Aliaño-González MJ, Cantos-Villar E. Wine polyphenol content and its influence on wine quality and properties: A review. Vol. 26, Molecules. MDPI AG; 2021.
3. Ribereau-Gayon P, Glories Y. Handbook of Enology:The Chemistry of Wine Stabilization and Treatments. 2006.
4. Habertson J, Spayd S. Measuring Phenolics in the winery. Am J Enol Vitic. 2006;57(3).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Marilyn M. García-Tenesaca¹, Andreu Tobeña Montanuy²

1. Biosystems S.A , Costa Brava 30, Barcelona, Spain

Contact the author*

Keywords

Tannins, Polyphenolic profile, Automated methods, Wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated.

RED WINE AGING WITHOUT SO₂: WHAT IMPACT ON MICROBIAL COMMUNITY?

Nowadays, the use of food preservatives is controversial, SO2 being no exception. Microbial communities have been particularly studied during the prefermentary and fermentation stages in a context of without added SO2. However, microbial risks associated with SO2 reduction or absence, particularly during the wine aging process, have so far been little studied. The microbiological control of wine aging is a key issue for winemakers wishing to produce wines without added SO2. The aim of the present study is to evaluate the impact of different wine aging strategies according to the addition or not of SO2 on the microbiological population levels and diversity.

NEUROPROTECTIVE AND ANTI-INFLAMMATORY PROPERTIES OF HYDROXYTYROSOL: A PROMISING BIOACTIVE COMPONENT OF WINE

Hydroxytyrosol (HT) is a phenolic compound present in olives, virgin olive oil and wine. HT has attracted great scientific interest due to its biological activities which have been related with the ortho-dihydroxy conformation in the aromatic ring. In white and red wines, HT has been detected at concentrations ranging from 0.28 to 9.6 mg/L and its occurrence has been closely related with yeast metabolism of aromatic amino acids by Ehrlich pathway during alcoholic fermentation. One of the most promising properties of this compound is the neuroprotective activity against pathological mechanisms related with neurode-generative disorders including Alzheimer’s and Parkinson’s disease.

INVESTIGATING TERROIR TYPICITY: A COMPREHENSIVE STUDY BASED ON THE AROMATIC AND SENSORIAL PROFILES OF RED WINES FROM CORBIÈRES APPELLATION

Volatile compounds play a significant role on the organoleptic properties defining wines quality. This particular role was exploited in several studies with the aim to differentiate wines from a more or less extensive production area, according to their sensory profile [1], as well as their chemical composition [2,3] (Di Paola-Naranjo et al., 2011; Kustos et al., 2020). Indeed, since aroma compounds development in grapes depends primarily on the environmental conditions of the vines and grapes (soil and climate), it is conceivable that these parameters craft the aromatic signature of the wine produced, in relation to its origin (Van Leeuwen et al., 2020). In this work, a general study on the aromatic and sensorial profile of wines produced in five sub-regions of the Corbières denomination, a renowned red grape varieties viticultural region in South France, was reported.

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine.