terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Abstract

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products. This method aims to provide an accurate approximation of condensed tannin levels, similar to the widely used precipitation assay that involves the polysaccharide polymer methyl cellulose. The new tannin approximation is based on the strong correlation observed between Total Polyphenol Index (TPI) and methyl cellulose precipitable (MCP) tannin assay as both are determined at 280 nm, and using the epicatechin calibration is possible to obtain a value that is equivalent to condensed tannins determined by MCP tannin assay. Thus far, the results have shown a strong correlation between this new method and MCP tannin assay, with an r2 value of 0.83 and a sample size of 60. The present study has included wines from diverse geographical locations and varying ages. In addition to quantifying condensed tannins, the study also aimed to explore potential correlations that may explain differences found in the wines by analysing other polyphenolic parameters. These parameters included catechins determined via the DMACA reaction, anthocyanins based on their structural transformation arising from a change in pH, total polyphenols measured using the Folin-Ciocalteu reaction, TPI, and the chromatic features of wines at 420, 520 and 620 nm. Moreover, the study incorporated analyses of pH, total acidity, and ethanol content to obtain a comprehensive understanding of the wines’ chemical composition. Noteworthy, the study is expanding the sampling to consider more matrices within the winemaking process.

All of the aforementioned parameters, including the condensed tannin, were determined automatically using the BioSystems SPICA® analyzer. The technical simplicity of automated methods for phenolic evaluation, will lead to enhanced efficiency, robustness, and accuracy. Furthermore, these automated methods may facilitate greater field applications, leading to increased profitability and an opportunity to improve wine quality.

 

1. Vignault A, González-Centeno MR, Pascual O, Gombau J, Jourdes M, Moine V, et al. Chemical characterization, antioxidant properties and oxygen consumption rate of 36 commercial oenological tannins in a model wine solution. Food Chem. 2018 Dec 1;268:210–9.
2. Gutiérrez-Escobar R, Aliaño-González MJ, Cantos-Villar E. Wine polyphenol content and its influence on wine quality and properties: A review. Vol. 26, Molecules. MDPI AG; 2021.
3. Ribereau-Gayon P, Glories Y. Handbook of Enology:The Chemistry of Wine Stabilization and Treatments. 2006.
4. Habertson J, Spayd S. Measuring Phenolics in the winery. Am J Enol Vitic. 2006;57(3).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Marilyn M. García-Tenesaca¹, Andreu Tobeña Montanuy²

1. Biosystems S.A , Costa Brava 30, Barcelona, Spain

Contact the author*

Keywords

Tannins, Polyphenolic profile, Automated methods, Wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.

EFFECT OF WHOLE BUNCH VINIFICATION ON THE ABUNDANCE OF A SWEETENING COMPOUND

In classic red wine-making process, grapes are usually destemmed between harvest and the filling of the vat. However, some winemakers choose to let all or a part of the stems in contact with the juice during vatting, this is called whole bunch vinification. For instance, this practice is traditionally used in some French wine regions, notably in Burgundy, Beaujolais and the Rhone Valley. The choice to keep this part of the grape is likely to affect the sensory properties of wine, as its gustatory perception1,2.

PESTICIDE RESIDUES IN THE VINEYARD ENVIRONMENTS: VINE LEAVES, GRAPE BERRIES, WINES, HONEYBEES AND ASIAN HORNETS

Synthetic pesticides are widely used in viticulture to ensure steady harvest quality and quantity. Fungicides are primarily used to control grapevine diseases but insecticides and herbicides are likewise used. Pesticide residues in viticultural areas currently represent a strong societal concern, but may also affect different trophic chains in such areas. In this project we wish to analyse honeybees collected from hives placed in different vineyards, their natural predator (the invasive hornet Vespa velutina), as well as the honey, grape berries, and wines produced.

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].