terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Abstract

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products. This method aims to provide an accurate approximation of condensed tannin levels, similar to the widely used precipitation assay that involves the polysaccharide polymer methyl cellulose. The new tannin approximation is based on the strong correlation observed between Total Polyphenol Index (TPI) and methyl cellulose precipitable (MCP) tannin assay as both are determined at 280 nm, and using the epicatechin calibration is possible to obtain a value that is equivalent to condensed tannins determined by MCP tannin assay. Thus far, the results have shown a strong correlation between this new method and MCP tannin assay, with an r2 value of 0.83 and a sample size of 60. The present study has included wines from diverse geographical locations and varying ages. In addition to quantifying condensed tannins, the study also aimed to explore potential correlations that may explain differences found in the wines by analysing other polyphenolic parameters. These parameters included catechins determined via the DMACA reaction, anthocyanins based on their structural transformation arising from a change in pH, total polyphenols measured using the Folin-Ciocalteu reaction, TPI, and the chromatic features of wines at 420, 520 and 620 nm. Moreover, the study incorporated analyses of pH, total acidity, and ethanol content to obtain a comprehensive understanding of the wines’ chemical composition. Noteworthy, the study is expanding the sampling to consider more matrices within the winemaking process.

All of the aforementioned parameters, including the condensed tannin, were determined automatically using the BioSystems SPICA® analyzer. The technical simplicity of automated methods for phenolic evaluation, will lead to enhanced efficiency, robustness, and accuracy. Furthermore, these automated methods may facilitate greater field applications, leading to increased profitability and an opportunity to improve wine quality.

 

1. Vignault A, González-Centeno MR, Pascual O, Gombau J, Jourdes M, Moine V, et al. Chemical characterization, antioxidant properties and oxygen consumption rate of 36 commercial oenological tannins in a model wine solution. Food Chem. 2018 Dec 1;268:210–9.
2. Gutiérrez-Escobar R, Aliaño-González MJ, Cantos-Villar E. Wine polyphenol content and its influence on wine quality and properties: A review. Vol. 26, Molecules. MDPI AG; 2021.
3. Ribereau-Gayon P, Glories Y. Handbook of Enology:The Chemistry of Wine Stabilization and Treatments. 2006.
4. Habertson J, Spayd S. Measuring Phenolics in the winery. Am J Enol Vitic. 2006;57(3).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Marilyn M. García-Tenesaca¹, Andreu Tobeña Montanuy²

1. Biosystems S.A , Costa Brava 30, Barcelona, Spain

Contact the author*

Keywords

Tannins, Polyphenolic profile, Automated methods, Wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EVALUATION OF INDIGENOUS CANADIAN YEAST STRAINS AS WINE STARTER CULTURES ON PILOT SCALE FERMENTATIONS

The interactions between geographical and biotic factors, along with the winemaking process, influence the composition and sensorial characteristics of wine¹. In addition to the primary end products of alcoholic fermentation, many secondary metabolites contribute to wine flavor and aroma and their production depends predominantly on the yeast strain carrying out the fermentation. Commercially available strains of S. cerevisiae help improve the reproducibility and predictability of wine quality. However, most commercial wine strains available on the market have been isolated from Europe, are genetically similar, and may not be the ideal strain to reflect the terroir of Canadian vineyards².

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

S. CEREVISIAE AND O. ŒNI BIOFILMS FOR CONTINUOUS ALCOHOLIC AND MALOLACTIC FERMENTATIONS IN WINEMAKING

Biofilms are sessile microbial communities whose lifestyle confers specific properties. They can be defined as a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to a surface and considered as a method of immobilisation. Immobilised microorganisms offer many advantages for industrial processes in the production of alcoholic beverages and specially increasing cell densities for a better management of fermentation rates.

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1].