terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Abstract

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products. This method aims to provide an accurate approximation of condensed tannin levels, similar to the widely used precipitation assay that involves the polysaccharide polymer methyl cellulose. The new tannin approximation is based on the strong correlation observed between Total Polyphenol Index (TPI) and methyl cellulose precipitable (MCP) tannin assay as both are determined at 280 nm, and using the epicatechin calibration is possible to obtain a value that is equivalent to condensed tannins determined by MCP tannin assay. Thus far, the results have shown a strong correlation between this new method and MCP tannin assay, with an r2 value of 0.83 and a sample size of 60. The present study has included wines from diverse geographical locations and varying ages. In addition to quantifying condensed tannins, the study also aimed to explore potential correlations that may explain differences found in the wines by analysing other polyphenolic parameters. These parameters included catechins determined via the DMACA reaction, anthocyanins based on their structural transformation arising from a change in pH, total polyphenols measured using the Folin-Ciocalteu reaction, TPI, and the chromatic features of wines at 420, 520 and 620 nm. Moreover, the study incorporated analyses of pH, total acidity, and ethanol content to obtain a comprehensive understanding of the wines’ chemical composition. Noteworthy, the study is expanding the sampling to consider more matrices within the winemaking process.

All of the aforementioned parameters, including the condensed tannin, were determined automatically using the BioSystems SPICA® analyzer. The technical simplicity of automated methods for phenolic evaluation, will lead to enhanced efficiency, robustness, and accuracy. Furthermore, these automated methods may facilitate greater field applications, leading to increased profitability and an opportunity to improve wine quality.

 

1. Vignault A, González-Centeno MR, Pascual O, Gombau J, Jourdes M, Moine V, et al. Chemical characterization, antioxidant properties and oxygen consumption rate of 36 commercial oenological tannins in a model wine solution. Food Chem. 2018 Dec 1;268:210–9.
2. Gutiérrez-Escobar R, Aliaño-González MJ, Cantos-Villar E. Wine polyphenol content and its influence on wine quality and properties: A review. Vol. 26, Molecules. MDPI AG; 2021.
3. Ribereau-Gayon P, Glories Y. Handbook of Enology:The Chemistry of Wine Stabilization and Treatments. 2006.
4. Habertson J, Spayd S. Measuring Phenolics in the winery. Am J Enol Vitic. 2006;57(3).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Marilyn M. García-Tenesaca¹, Andreu Tobeña Montanuy²

1. Biosystems S.A , Costa Brava 30, Barcelona, Spain

Contact the author*

Keywords

Tannins, Polyphenolic profile, Automated methods, Wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabilization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite.

CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

Riesling wines are appreciated for their diverse aromas, ranging from the fruity fresh characters in young vintages to the fragrant empyreumatic notes developed with aging. Wine tasters often refer to Riesling wines as prime examples showcasing terroir, with their typical aroma profiles reflecting the geographical provenance of the wine. However, the molecular basis of the distinctive aromas of these varietal wines from major Riesling producing regions in Europe have not been fully elucidated. In this study, new lights were shed on the chemical characterization and the sensory contribution of volatile thiols to Riesling wines from Rheingau, Mosel, and Alsace. First, Riesling wines (n = 46) from the three regions were collected and assessed for their aroma typicality by an expert panel.

CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

Interspecific hybrid winegrapes are of growing interest in the context of climate change based on their disease resistance and cold hardiness. In addition to a need for increased understanding of their chemical composition, there is little empirical evidence on the consumer perception of non-vinifera wine. Phenolic compounds, and particularly color, play an important organoleptic and quality determination role in wine, but can vary significantly in interspecific hybrid wines compared to wines produced from Vitis vinifera cultivars [1, 2, 3]. Anecdotally, the variation in anthocyanin species, interactions, and concentrations in interspecific hybrids could result in a variance from“vinifera-like” wine color.

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.

USING CHECK-ALL-THAT-APPLY (CATA) TO CATEGORIZE WINES: A DECISION-MAKING TOOL FOR WINE SELECTION

Bordeaux is the largest appellation vineyard in France. This contrasting vineyard with varied terroirs offers all styles of wine, resulting from the blending of several grape varieties. If these different profiles make the renown of Bordeaux wines, it can appear as a constraint when the aim is to study Bordeaux wines in their diversity. The selection of a representative sample can be performed by a sensory analysis carried out by trained panelists or by wine professionals, which can take several forms: consensus among experts, conventional descriptive analysis, typicality or quality evaluation. However, because of time, economic, and logistical constraints, these methods have limited applications. As an alternative to classical descriptive analysis, more intuitive methods that do not require training have been proposed recently to describe wines using an expert panel such as Napping, Free Choice or Flash Profiling, CATA or RATA.