terclim by ICS banner
IVES 9 IVES Conference Series 9 NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Abstract

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products. This method aims to provide an accurate approximation of condensed tannin levels, similar to the widely used precipitation assay that involves the polysaccharide polymer methyl cellulose. The new tannin approximation is based on the strong correlation observed between Total Polyphenol Index (TPI) and methyl cellulose precipitable (MCP) tannin assay as both are determined at 280 nm, and using the epicatechin calibration is possible to obtain a value that is equivalent to condensed tannins determined by MCP tannin assay. Thus far, the results have shown a strong correlation between this new method and MCP tannin assay, with an r2 value of 0.83 and a sample size of 60. The present study has included wines from diverse geographical locations and varying ages. In addition to quantifying condensed tannins, the study also aimed to explore potential correlations that may explain differences found in the wines by analysing other polyphenolic parameters. These parameters included catechins determined via the DMACA reaction, anthocyanins based on their structural transformation arising from a change in pH, total polyphenols measured using the Folin-Ciocalteu reaction, TPI, and the chromatic features of wines at 420, 520 and 620 nm. Moreover, the study incorporated analyses of pH, total acidity, and ethanol content to obtain a comprehensive understanding of the wines’ chemical composition. Noteworthy, the study is expanding the sampling to consider more matrices within the winemaking process.

All of the aforementioned parameters, including the condensed tannin, were determined automatically using the BioSystems SPICA® analyzer. The technical simplicity of automated methods for phenolic evaluation, will lead to enhanced efficiency, robustness, and accuracy. Furthermore, these automated methods may facilitate greater field applications, leading to increased profitability and an opportunity to improve wine quality.

 

1. Vignault A, González-Centeno MR, Pascual O, Gombau J, Jourdes M, Moine V, et al. Chemical characterization, antioxidant properties and oxygen consumption rate of 36 commercial oenological tannins in a model wine solution. Food Chem. 2018 Dec 1;268:210–9.
2. Gutiérrez-Escobar R, Aliaño-González MJ, Cantos-Villar E. Wine polyphenol content and its influence on wine quality and properties: A review. Vol. 26, Molecules. MDPI AG; 2021.
3. Ribereau-Gayon P, Glories Y. Handbook of Enology:The Chemistry of Wine Stabilization and Treatments. 2006.
4. Habertson J, Spayd S. Measuring Phenolics in the winery. Am J Enol Vitic. 2006;57(3).

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Marilyn M. García-Tenesaca¹, Andreu Tobeña Montanuy²

1. Biosystems S.A , Costa Brava 30, Barcelona, Spain

Contact the author*

Keywords

Tannins, Polyphenolic profile, Automated methods, Wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

NOVEL BENZENETHIOLS WITH PHENOLS CAUSE ASHY, SMOKE FLAVOR PERCEPTION IN RED WINES

Smoke impacts on wines are becoming a worldwide problem; the size and severity of wildfires increasing due to influences from changing climates.¹ For over a century, wines have been known to have a unique issue of absorbing chemical compounds derived from wildfire smoke wherein the flavor of the subsequent wine becomes ashy, rubbery, campfire-like, and smoky.² The economic impacts of a smoke-impacted wine can last for years depending on the grape varietal, costing Oregon and Washington states in the United States over a billion dollars from the 2020 wildfires, as an example.³ While years of research have indicated elevated concentrations of smoke-related compounds, such as guaiacol and syringol, in wines after smoke events, unfortunately, replicating the sensory experience using smoke-associated phenols has not had much success.⁴

DISCRIMINATION OF BOTRYTIS CINEREA INFECTED GRAPES USING UNTARGE-TED METABOLOMIC ANALYSIS WITH DIRECT ELECTROSPRAY IONISATION MASS SPECTROMETRY

Infection of grapes (Vitis vinifera) by Botrytis cinerea (grey mould) is a frequent occurrence in vineyards and during prolonged wet and humid conditions can lead to significant detrimental impact on yield and overall quality. Growth of B. cinerea causes oxidisation of phenolic compounds resulting in a loss of colour and formation of a suite of off-flavours and odours in wine made from excessively infected fruit. Apart from wine grapes, developing post-harvest B. cinerea infection in high-value horticultural products during storage, shipment and marketing may cause significant loss in fresh fruits, vegetables and other crops. A rapid and sensitive assessment method to detect, screen and quantify fungal infection would greatly assist viticultural growers and winemakers in determining fruit quality.

EFFECT OF FERMENTATION TEMPERATURE GRADIENT AND SKIN CONTACT ON ESTER AND THIOL PRODUCTION AND TROPICAL FRUIT PERCEPTION IN CHARDONNAY WINES

Wines with tropical fruit aromas have become increasingly more available1,2. With increased availability of different wine styles, it has become important to understand the compounds that cause the fruity aromas in wine. Previous work using micro fermentations showed that fermentation temperature gradients and time on skins resulted in an increase in thiol and ester compounds post fermentation and these compounds are known to cause tropical fruit aroma in wines³. This work aimed to scale up these fermentations/operations to determine if the desired aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

PHENOTYPIC DIVERSITY AND BIO-PROTECTION CAPABILITY OF METSCHNIKOWIA SP. IN OENOLOGY

Nowadays, the trend is to reduce the use of chemical inputs in the food sector, including in oenology. One of the inputs widely used in the wine making process are sulfites, for its several properties: antimicrobial and antioxidiant. This use isn’t without consequences on consumer’s health and environment, it can lead for example to allergic reactions and pollution. To limit the addition of chemical inputs, microbial alternatives are used. It consists to inoculate in grape must, a micro-organism able to inhibit the growth of the negative indigenous flora during the phase before the fermentation and to guarantee the sensory qualities of wines.

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also
the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural
practices need to be examined to decrease the levels of sugars.