terclim by ICS banner
IVES 9 IVES Conference Series 9 ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Abstract

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown. The hypothesis of this work was that the color and composition of light and darker rosé wines are driven by different mechanisms occurring during alcoholic fermentation, depending on the initial must composition. To test this hypothesis, three different Vitis vinifera grape varieties commonly used for the elaboration of rosé wines in French Provence area were selected for their different color potential: Grenache, Syrah, and Cinsault. The reactions and adsorption on yeast lees of phenolic compounds and their role in color and composition changes during alcoholic fermentation of rosé musts were investigated using UV-visible spectrophotometry, ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry, and high performance size-exclusion chromatography coupled to UV-visible spectrophotometry.

Targeted mass spectrometry analysis exhibited large varietal differences in must and wine compositions, with higher proportions of hydroxycinnamic acids in Cinsault and Grenache whereas higher concentrations of anthocyanins and flavanols were found in Syrah. Syrah must color was mainly due to anthocyanins which were partly converted to derived pigments through reactions with yeast metabolites, resulting in a limited color drop during alcoholic fermentation. UV-visible spectrophotometry and size exclusion chromatography data indicated that Grenache and Cinsault musts contained oligomeric pigments derived from hydroxycinnamic acids and flavanols which were mostly lost during fermentation due to adsorption on lees. This work highlighted the impact of must composition, reflecting varietal characteristics, on changes occurring during fermentation and consequently wine color.

 

1. Leborgne, C., Lambert, M., Ducasse, M.-A., Meudec, E., Verbaere, A., Sommerer, N., Boulet, J.-C., Masson, G., Mouret, J.-R., & Cheynier, V. (2022). Elucidating the Color of Rosé Wines Using Polyphenol-Targeted Metabolomics. Molecules, 27(4), Article 4. https://doi.org/10.3390/molecules27041359

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Cécile Leborgne¹, Marie-Agnès Ducasse⁵, Emmanuelle Meudec2,4, Stéphanie Carrillo², Arnaud Verbaere 2,4, Nicolas Sommerer2,4, Gilles Masson³, Aude Vernhet², Jean-Roch Mouret², and Véronique Cheynier2,4

1. UE Pech Rouge, Univ Montpellier, INRAE, Gruissan, France
2. SPO, INRAE, Univ Montpellier, Institut Agro, Montpellier, France; 
3. Institut Français de la Vigne et du Vin, Centre du rosé, Vidauban, France; 
4. INRAE, PROBE research infrastructure, Polyphenol Analytical Facility, Montpellier, France;
5. Institut Français de la Vigne et du Vin, UMT Actia Oenotypage, Domaine de Pech Rouge, France

Contact the author*

Keywords

wine, alcoholic fermentation, rosé wine color, polyphenols

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

THE EFFECT OF PRE-FERMENTATIVE GLYPHOSATE ADDITION ON THE METABOLITE PROFILE OF WINE

The synthetic herbicide glyphosate has been used extensively in viticulture over many decades to combat weeds. Despite this, the possible influence of residual glyphosate on both the alcoholic fermentation of grape juice and the subsequent metabolite profile of wines has not been investigated. In this study, Pinot noir juice supplemented with different concentrations of glyphosate (0 µg L-1, 10 µg L-1 and 1000 µg L-1) was fermented with commercial Saccharomyces cerevisiae yeast strains. Using a combination of analytical methods, 80 metabolites were quantified in the resulting wines.

NEW TOOL FOR SIMULTANEOUS MEASUREMENT OF OXYGEN CONSUMPTION AND COLOUR MODIFICATIONS IN WINES

Measuring the effect of oxygen consumption on the colour of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine is able to consume without significantly altering its colour. The changes produced in wine after being exposed to high oxygen concen-trations have been studied by different authors, but in all cases the wine has been analysed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen.

ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF) (Lonvaud-Funel, 1999). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D (Lorentzen et al., 2019). Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B+C, and D, respectively, although B and C strains were also detected in wine (Campbell-Sills et al., 2015; Coton et al., 2017; Lorentzen et al., 2019;

WINE AS AN EMOTIONAL AND AESTHETIC OBJECT: IMPACT OF EXPERTISE

Wine tasting has been shown to provide emotions to tasters (Coste et al. 2018). How will expertise impact this emotional response? Burnham and Skilleås (2012) reported that the cultural, experiential, and aesthetic competencies characterize an expert in wine compared to a novice. Although there is no consensual definition of an aesthetic experience, Burnham and Skilleås (2012) reported that aesthetic appreciation is “disinterested, normative for others and communicable” in comparison to sensory pleasure.

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.