terclim by ICS banner
IVES 9 IVES Conference Series 9 ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Abstract

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown. The hypothesis of this work was that the color and composition of light and darker rosé wines are driven by different mechanisms occurring during alcoholic fermentation, depending on the initial must composition. To test this hypothesis, three different Vitis vinifera grape varieties commonly used for the elaboration of rosé wines in French Provence area were selected for their different color potential: Grenache, Syrah, and Cinsault. The reactions and adsorption on yeast lees of phenolic compounds and their role in color and composition changes during alcoholic fermentation of rosé musts were investigated using UV-visible spectrophotometry, ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry, and high performance size-exclusion chromatography coupled to UV-visible spectrophotometry.

Targeted mass spectrometry analysis exhibited large varietal differences in must and wine compositions, with higher proportions of hydroxycinnamic acids in Cinsault and Grenache whereas higher concentrations of anthocyanins and flavanols were found in Syrah. Syrah must color was mainly due to anthocyanins which were partly converted to derived pigments through reactions with yeast metabolites, resulting in a limited color drop during alcoholic fermentation. UV-visible spectrophotometry and size exclusion chromatography data indicated that Grenache and Cinsault musts contained oligomeric pigments derived from hydroxycinnamic acids and flavanols which were mostly lost during fermentation due to adsorption on lees. This work highlighted the impact of must composition, reflecting varietal characteristics, on changes occurring during fermentation and consequently wine color.

 

1. Leborgne, C., Lambert, M., Ducasse, M.-A., Meudec, E., Verbaere, A., Sommerer, N., Boulet, J.-C., Masson, G., Mouret, J.-R., & Cheynier, V. (2022). Elucidating the Color of Rosé Wines Using Polyphenol-Targeted Metabolomics. Molecules, 27(4), Article 4. https://doi.org/10.3390/molecules27041359

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Cécile Leborgne¹, Marie-Agnès Ducasse⁵, Emmanuelle Meudec2,4, Stéphanie Carrillo², Arnaud Verbaere 2,4, Nicolas Sommerer2,4, Gilles Masson³, Aude Vernhet², Jean-Roch Mouret², and Véronique Cheynier2,4

1. UE Pech Rouge, Univ Montpellier, INRAE, Gruissan, France
2. SPO, INRAE, Univ Montpellier, Institut Agro, Montpellier, France; 
3. Institut Français de la Vigne et du Vin, Centre du rosé, Vidauban, France; 
4. INRAE, PROBE research infrastructure, Polyphenol Analytical Facility, Montpellier, France;
5. Institut Français de la Vigne et du Vin, UMT Actia Oenotypage, Domaine de Pech Rouge, France

Contact the author*

Keywords

wine, alcoholic fermentation, rosé wine color, polyphenols

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).

IDENTIFICATION AND LEVELS OF PHENOLIC COMPOUNDS (TANINS, ANTHO-CYANS) IN RED VARIETAL WINES (PROKUPAC AND BLACK TAMJANIKA) FROM SERBIA

The phenolic compounds of red wines represent a source of numerous benefits for human health, which is why they are a constant subject of scientific research. Winemaking in Serbia has a growing economic significance, with particularly autochthonous varieties included [1]. This research identifies and quantifies phenolic compounds of Serbian red varietal wines of Prokupac and Black Tamjanika varieties. Quantification of the level of phenolics has been conducted, including molecular tannins [(+)-catechin, (-)-epicatechin, procyanidin dimers B1, B2, B3, B4], molecular anthocyanins, and the mean degree of polymerization of tannins by HPLC by UV detection, total antioxidant capacity via spectrophotometric methods and chromatic characteristics via CIELAB.

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.