terclim by ICS banner
IVES 9 IVES Conference Series 9 ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Abstract

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown. The hypothesis of this work was that the color and composition of light and darker rosé wines are driven by different mechanisms occurring during alcoholic fermentation, depending on the initial must composition. To test this hypothesis, three different Vitis vinifera grape varieties commonly used for the elaboration of rosé wines in French Provence area were selected for their different color potential: Grenache, Syrah, and Cinsault. The reactions and adsorption on yeast lees of phenolic compounds and their role in color and composition changes during alcoholic fermentation of rosé musts were investigated using UV-visible spectrophotometry, ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry, and high performance size-exclusion chromatography coupled to UV-visible spectrophotometry.

Targeted mass spectrometry analysis exhibited large varietal differences in must and wine compositions, with higher proportions of hydroxycinnamic acids in Cinsault and Grenache whereas higher concentrations of anthocyanins and flavanols were found in Syrah. Syrah must color was mainly due to anthocyanins which were partly converted to derived pigments through reactions with yeast metabolites, resulting in a limited color drop during alcoholic fermentation. UV-visible spectrophotometry and size exclusion chromatography data indicated that Grenache and Cinsault musts contained oligomeric pigments derived from hydroxycinnamic acids and flavanols which were mostly lost during fermentation due to adsorption on lees. This work highlighted the impact of must composition, reflecting varietal characteristics, on changes occurring during fermentation and consequently wine color.

 

1. Leborgne, C., Lambert, M., Ducasse, M.-A., Meudec, E., Verbaere, A., Sommerer, N., Boulet, J.-C., Masson, G., Mouret, J.-R., & Cheynier, V. (2022). Elucidating the Color of Rosé Wines Using Polyphenol-Targeted Metabolomics. Molecules, 27(4), Article 4. https://doi.org/10.3390/molecules27041359

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Cécile Leborgne¹, Marie-Agnès Ducasse⁵, Emmanuelle Meudec2,4, Stéphanie Carrillo², Arnaud Verbaere 2,4, Nicolas Sommerer2,4, Gilles Masson³, Aude Vernhet², Jean-Roch Mouret², and Véronique Cheynier2,4

1. UE Pech Rouge, Univ Montpellier, INRAE, Gruissan, France
2. SPO, INRAE, Univ Montpellier, Institut Agro, Montpellier, France; 
3. Institut Français de la Vigne et du Vin, Centre du rosé, Vidauban, France; 
4. INRAE, PROBE research infrastructure, Polyphenol Analytical Facility, Montpellier, France;
5. Institut Français de la Vigne et du Vin, UMT Actia Oenotypage, Domaine de Pech Rouge, France

Contact the author*

Keywords

wine, alcoholic fermentation, rosé wine color, polyphenols

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

Aging red wines in oak barrels is an expensive and laborious process that can only be applied to wines with a certain added value. For this reason, the use of oak alternatives coupled with micro-oxygenation has progressively increased over recent years, because it can reproduce the processes taking place in the barrels more economically and quickly [1]. Several studies have explored how oak alternatives [2-5] can contribute to wine composition and quality but little is known about the influence of their thickness.

CHARACTERIZATION OF THE VOLATILE COMPOUNDS PROFILE OF COMMERCIAL GRAPPAS OBTAINED FROM THE POMACE OF AMARONE WINES

Grappa is a traditional Italian alcoholic beverage, with an alcohol content generally between 40-60% vol., obtained from the distillation of grape pomace used for the production of wine. Grappa are often aged in wooden barrels. There are various types of grappa: young, aromatic, aged, extra-aged depending on whether the distillate comes from aromatic vines or is aged in wooden barrels for shorter or longer periods. There is also flavored grappa if herbs, fruit or roots are added. All this makes it an extremely heterogeneous product both from an organoleptic and compositional point of view.

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.

FACTORS AFFECTING QUERCETIN SOLUBILITY IN SANGIOVESE RED WINE: FIRST RESULTS

Quercetin (Q) is present in grape in form of glycosides and as aglycone. These compounds are extracted from grape skins during winemaking. In wines, following the hydrolysis reactions, the amount of quercetin aglycon can exceed its solubility value. Unfortunately, a threshold solubility concentration for quercetin in wine is not easy to determine because it depends on wine matrix (Gambuti et al., 2020).

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines.