terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Abstract

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity. Furthermore, the presence of mannosyl phosphate groups confers a net negative charge to the cell surface. The structural features in mannoproteins that promote their interactions with polyphenols and adsorption specificity are not clearly established yet. This work aimed to study the impact of mannosyl phosphorylation and mannan backbone branching on polyphenol adsorption by yeast cell walls.

Saccharomyces cerevisiae BY4742 Wild-type and mnn4 and mnn2 mutants (involved in N-glycosyl phosphorylation and mannan backbone branching, respectively) were obtained from EUROSCARF. Cell walls were purified and characterized in terms of total nitrogen, neutral sugar, and global charges. Their interactions with a red wine polyphenolic pool were studied in a wine-like solution by means of adsorption isotherms. Polyphenols were analyzed by means of UV-visible spectrophotometry and High-Per-formance Size-Exclusion Chromatography.

High molecular weight tannins and derived pigments were preferentially adsorbed whatever CW types, however, their affinity was significantly lower for mutants as compared to the wild-type. The mnn4 and mnn2 mutations induced changes in the mannose/protein ratio and a decrease of the CW net charge at wine pH. Both mutations induced a decrease in polyphenol affinity as well as a decrease in CW biosorption capacity, however, the latter was much more pronounced for the mnn4 mutant (N-glycosyl phosphorylation).

This work evidenced the key role of mannosyl phosphorylation on yeast CW functionality regarding wine polyphenol adsorption.

 

1. Mekoue Nguela, J., Teuf, O., Bicca, S. A., & Vernhet, A. (2023). Impact of mannoprotein N-glycosyl phosphorylation and branching on the sorption of wine polyphenols by yeasts and yeast cell walls. Food Chemistry, 403, 134326.
2. Bicca, S. A., Poncet-Legrand, C., Williams, P., Mekoue Nguela, J., Doco, T., & Vernhet, A. (2022). Structural characteristics of Saccharomyces cerevisiae mannoproteins: Impact of their polysaccharide part. Carbohydrate Polymers, 277, 118758.
3. Caridi, A., Sidari, R., Krakova, L., Kuchta, T., & Pangallo, D. (2015). Assessment of color adsorption by yeast using grape skin agar and impact on red wine color. Journal International de La Vigne et Du Vin, 49, 195–203.
4. Bozic, T. J., Butinar, L., Albreht, A., Vovk, I., Korte, D., & Mozeti, B. (2020). LWT – Food Science and Technology The impact of Saccharomyces and non-Saccharomyces yeasts on wine colour : A laboratory study of vinylphenolic pyranoanthocyanin formation and anthocyanin cell wall adsorption. Food Science and Technology, 123(October 2019), 109072. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

J. Mekoue Nguela¹, O. Teuf¹, S. Assuncao Bicca¹, N. Sieczkowski² ,A. Vernhet¹
1. SPO, Institut Agro Montpellier, INRAE, Univ Montpellier, Montpellier, France.
2. Lallemand SAS, 19 rue des Briquetiers, BP 59, 31 702 Blagnac, France.

Contact the author*

Keywords

Saccharomyces cerevisiae cell walls, Mannosyl phosphorylation, Mannan branching, Wine polyphenols adsorption

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INVESTIGATING TERROIR TYPICITY: A COMPREHENSIVE STUDY BASED ON THE AROMATIC AND SENSORIAL PROFILES OF RED WINES FROM CORBIÈRES APPELLATION

Volatile compounds play a significant role on the organoleptic properties defining wines quality. This particular role was exploited in several studies with the aim to differentiate wines from a more or less extensive production area, according to their sensory profile [1], as well as their chemical composition [2,3] (Di Paola-Naranjo et al., 2011; Kustos et al., 2020). Indeed, since aroma compounds development in grapes depends primarily on the environmental conditions of the vines and grapes (soil and climate), it is conceivable that these parameters craft the aromatic signature of the wine produced, in relation to its origin (Van Leeuwen et al., 2020). In this work, a general study on the aromatic and sensorial profile of wines produced in five sub-regions of the Corbières denomination, a renowned red grape varieties viticultural region in South France, was reported.

SENSORY EVALUATION OF WINE AROMA: SHOULD COLOR-DRIVEN DESCRIPTORS BE USED?

The vocabulary used to describe wine aroma is commonly organized according to color, raising the question of whether they reflect the reality of olfactory perception. Previous studies have assumed this convention of color-aroma matching, and have investigated color’s influence on the perception of aroma only in dyed white wine or in red wine from particular places of origin. Here 48 white and red varietal wines from around the world were evaluated in black glasses then in clear glasses by a panel of wine experts, who gave intensity ratings for aroma attributes commonly used by wine professionals. In black glasses, aromas conventionally associated with white wine were perceived in the red wines, and vice versa.

PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

As wine resilience is the result of different variables, including the wine pH and the concentration of wine components, a detailed knowledge of the relationships between the adjuvant to attain stability and the oenological medium is fundamental for process optimization and to increase wine durability till the time of consumption.

BORDEAUX RED WINES WITHOUT ADDED SULFITES SPECIFICITIES: COMPOSITIONAL AND SENSORY APPROACHES TOWARDS HIGHLIGHTING AND EXPLAI-NING THEIR SPECIFIC FRUITINESS AND COOLNESS

With the development of naturality expectations, wines produced without any addition of sulfur dioxide (SO₂) become very popular for consumers and such wines are increasingly present on the market. Recent studies also showed that Bordeaux red wines without added SO₂ could be differentiated from a sensory point of view from similar wines produced with SO₂¹. Thus, the aim of the current study was to characterize from a sensory point of view, specific aromas of wines without added SO₂ and to identify compounds involved.

HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

Wine varietal aroma is the result of a mixture of compounds formed or liberated from specific grape-aroma precursors. Their liberation/formation from their specific precursors can occur spontaneously by acid catalyzed rearrangements or hydrolysis or by the action of the yeast enzymatic activities. The influence of yeast during fermentation on the production of these volatile compounds has been widely studied however, the effect of this influence during aging is not fully understood. In order to evaluate these processes several indirect strategies have been used to study aroma precursors although they are not useful to understand the chemistry of the process.