terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Abstract

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity. Furthermore, the presence of mannosyl phosphate groups confers a net negative charge to the cell surface. The structural features in mannoproteins that promote their interactions with polyphenols and adsorption specificity are not clearly established yet. This work aimed to study the impact of mannosyl phosphorylation and mannan backbone branching on polyphenol adsorption by yeast cell walls.

Saccharomyces cerevisiae BY4742 Wild-type and mnn4 and mnn2 mutants (involved in N-glycosyl phosphorylation and mannan backbone branching, respectively) were obtained from EUROSCARF. Cell walls were purified and characterized in terms of total nitrogen, neutral sugar, and global charges. Their interactions with a red wine polyphenolic pool were studied in a wine-like solution by means of adsorption isotherms. Polyphenols were analyzed by means of UV-visible spectrophotometry and High-Per-formance Size-Exclusion Chromatography.

High molecular weight tannins and derived pigments were preferentially adsorbed whatever CW types, however, their affinity was significantly lower for mutants as compared to the wild-type. The mnn4 and mnn2 mutations induced changes in the mannose/protein ratio and a decrease of the CW net charge at wine pH. Both mutations induced a decrease in polyphenol affinity as well as a decrease in CW biosorption capacity, however, the latter was much more pronounced for the mnn4 mutant (N-glycosyl phosphorylation).

This work evidenced the key role of mannosyl phosphorylation on yeast CW functionality regarding wine polyphenol adsorption.

 

1. Mekoue Nguela, J., Teuf, O., Bicca, S. A., & Vernhet, A. (2023). Impact of mannoprotein N-glycosyl phosphorylation and branching on the sorption of wine polyphenols by yeasts and yeast cell walls. Food Chemistry, 403, 134326.
2. Bicca, S. A., Poncet-Legrand, C., Williams, P., Mekoue Nguela, J., Doco, T., & Vernhet, A. (2022). Structural characteristics of Saccharomyces cerevisiae mannoproteins: Impact of their polysaccharide part. Carbohydrate Polymers, 277, 118758.
3. Caridi, A., Sidari, R., Krakova, L., Kuchta, T., & Pangallo, D. (2015). Assessment of color adsorption by yeast using grape skin agar and impact on red wine color. Journal International de La Vigne et Du Vin, 49, 195–203.
4. Bozic, T. J., Butinar, L., Albreht, A., Vovk, I., Korte, D., & Mozeti, B. (2020). LWT – Food Science and Technology The impact of Saccharomyces and non-Saccharomyces yeasts on wine colour : A laboratory study of vinylphenolic pyranoanthocyanin formation and anthocyanin cell wall adsorption. Food Science and Technology, 123(October 2019), 109072. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

J. Mekoue Nguela¹, O. Teuf¹, S. Assuncao Bicca¹, N. Sieczkowski² ,A. Vernhet¹
1. SPO, Institut Agro Montpellier, INRAE, Univ Montpellier, Montpellier, France.
2. Lallemand SAS, 19 rue des Briquetiers, BP 59, 31 702 Blagnac, France.

Contact the author*

Keywords

Saccharomyces cerevisiae cell walls, Mannosyl phosphorylation, Mannan branching, Wine polyphenols adsorption

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine.
The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.

MOVING FROM SULFITES TO BIOPROTECTION: WHICH IMPACT ON CHARDONNAY WINE?

Over the last few years, several tools have been developed to reduce the quantity of sulfites used during winemaking, including bioprotection. Although its effectiveness in preventing the development of spoilage microorganisms has been proven, few data are available on the impact of sulfite substitution by bioprotection on the final product. The objective of this study was therefore to characterize Chardonnay wines with the addition of sulfite or bioprotection in the pre-fermentation stage. The effects of both treatments on resulting matrices was evaluated at several scales: analysis of classical oenological parameters, antioxidant capacity, phenolic compounds, non-volatile metabolome and sensory profile.

WHICH IMPACT FOR PROANTHOCYANIDIC TANNINS ON RED WINE FRUITY AROMA? SENSORY AND PHYSICOCHEMICAL APPROACHES

Previous research on the fruity character of red wines highlighted the role of esters. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall aroma of wine, contributing to a modulation of its global aromatic expression. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.
Sensory analysis of numerous aromatic reconstitutions, including triangular tests, detection thresholds, and sensory profiles, were conducted in order to evaluate the sensory impact of tannins on red wine esters perception.

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet.