terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Abstract

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity. Furthermore, the presence of mannosyl phosphate groups confers a net negative charge to the cell surface. The structural features in mannoproteins that promote their interactions with polyphenols and adsorption specificity are not clearly established yet. This work aimed to study the impact of mannosyl phosphorylation and mannan backbone branching on polyphenol adsorption by yeast cell walls.

Saccharomyces cerevisiae BY4742 Wild-type and mnn4 and mnn2 mutants (involved in N-glycosyl phosphorylation and mannan backbone branching, respectively) were obtained from EUROSCARF. Cell walls were purified and characterized in terms of total nitrogen, neutral sugar, and global charges. Their interactions with a red wine polyphenolic pool were studied in a wine-like solution by means of adsorption isotherms. Polyphenols were analyzed by means of UV-visible spectrophotometry and High-Per-formance Size-Exclusion Chromatography.

High molecular weight tannins and derived pigments were preferentially adsorbed whatever CW types, however, their affinity was significantly lower for mutants as compared to the wild-type. The mnn4 and mnn2 mutations induced changes in the mannose/protein ratio and a decrease of the CW net charge at wine pH. Both mutations induced a decrease in polyphenol affinity as well as a decrease in CW biosorption capacity, however, the latter was much more pronounced for the mnn4 mutant (N-glycosyl phosphorylation).

This work evidenced the key role of mannosyl phosphorylation on yeast CW functionality regarding wine polyphenol adsorption.

 

1. Mekoue Nguela, J., Teuf, O., Bicca, S. A., & Vernhet, A. (2023). Impact of mannoprotein N-glycosyl phosphorylation and branching on the sorption of wine polyphenols by yeasts and yeast cell walls. Food Chemistry, 403, 134326.
2. Bicca, S. A., Poncet-Legrand, C., Williams, P., Mekoue Nguela, J., Doco, T., & Vernhet, A. (2022). Structural characteristics of Saccharomyces cerevisiae mannoproteins: Impact of their polysaccharide part. Carbohydrate Polymers, 277, 118758.
3. Caridi, A., Sidari, R., Krakova, L., Kuchta, T., & Pangallo, D. (2015). Assessment of color adsorption by yeast using grape skin agar and impact on red wine color. Journal International de La Vigne et Du Vin, 49, 195–203.
4. Bozic, T. J., Butinar, L., Albreht, A., Vovk, I., Korte, D., & Mozeti, B. (2020). LWT – Food Science and Technology The impact of Saccharomyces and non-Saccharomyces yeasts on wine colour : A laboratory study of vinylphenolic pyranoanthocyanin formation and anthocyanin cell wall adsorption. Food Science and Technology, 123(October 2019), 109072. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

J. Mekoue Nguela¹, O. Teuf¹, S. Assuncao Bicca¹, N. Sieczkowski² ,A. Vernhet¹
1. SPO, Institut Agro Montpellier, INRAE, Univ Montpellier, Montpellier, France.
2. Lallemand SAS, 19 rue des Briquetiers, BP 59, 31 702 Blagnac, France.

Contact the author*

Keywords

Saccharomyces cerevisiae cell walls, Mannosyl phosphorylation, Mannan branching, Wine polyphenols adsorption

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

2-YEARS STUDY ON COMPARISON BETWEEN THE VOLATILE CHEMICAL PROFILE OF TWO DIFFERENT BLENDS FOR THE ENHANCEMENT OF “VALPOLICELLA SUPERIORE”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest.

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

Selected strains of non-Saccharomyces yeasts showed a positive effect on sensory characteristics and aromatic complexity of wine. A sequential microbial culture of non-Saccharomyces and S. cerevisiae species is usually inoculated due to poorer fermentability of non-Saccharomyces species. The aim of the study was to investigate the role of non-Saccharomyces yeasts in the production of white wines. We evaluated how individual combinations of sequential inoculations of non-Saccharomyces and S. cerevisiae species affect the aromatic compounds (volatile thiols and esters) and sensory characteristics of the wines.

CHARACTERIZATION OF ENOLOGICAL OAK TANNIN EXTRACTS BY MULTI-ANALYTICAL METHODS APPROACH

Oak tannin extracts are commonly used to improve wine properties. The main polyphenols found in oak wood extracts are ellagitannins¹ that release ellagic acid upon hydrolysis and comprise numerous structures². Moreover, oak tannin extracts contain other compounds giving a complex mixture. Consequently, the official OIV method based on gravimetric analysis of the tannin fraction adsorbed on polyvinylpolypyrrolidone is not sufficient to describe their composition and highlight their chemical diversity.