terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Abstract

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity. Furthermore, the presence of mannosyl phosphate groups confers a net negative charge to the cell surface. The structural features in mannoproteins that promote their interactions with polyphenols and adsorption specificity are not clearly established yet. This work aimed to study the impact of mannosyl phosphorylation and mannan backbone branching on polyphenol adsorption by yeast cell walls.

Saccharomyces cerevisiae BY4742 Wild-type and mnn4 and mnn2 mutants (involved in N-glycosyl phosphorylation and mannan backbone branching, respectively) were obtained from EUROSCARF. Cell walls were purified and characterized in terms of total nitrogen, neutral sugar, and global charges. Their interactions with a red wine polyphenolic pool were studied in a wine-like solution by means of adsorption isotherms. Polyphenols were analyzed by means of UV-visible spectrophotometry and High-Per-formance Size-Exclusion Chromatography.

High molecular weight tannins and derived pigments were preferentially adsorbed whatever CW types, however, their affinity was significantly lower for mutants as compared to the wild-type. The mnn4 and mnn2 mutations induced changes in the mannose/protein ratio and a decrease of the CW net charge at wine pH. Both mutations induced a decrease in polyphenol affinity as well as a decrease in CW biosorption capacity, however, the latter was much more pronounced for the mnn4 mutant (N-glycosyl phosphorylation).

This work evidenced the key role of mannosyl phosphorylation on yeast CW functionality regarding wine polyphenol adsorption.

 

1. Mekoue Nguela, J., Teuf, O., Bicca, S. A., & Vernhet, A. (2023). Impact of mannoprotein N-glycosyl phosphorylation and branching on the sorption of wine polyphenols by yeasts and yeast cell walls. Food Chemistry, 403, 134326.
2. Bicca, S. A., Poncet-Legrand, C., Williams, P., Mekoue Nguela, J., Doco, T., & Vernhet, A. (2022). Structural characteristics of Saccharomyces cerevisiae mannoproteins: Impact of their polysaccharide part. Carbohydrate Polymers, 277, 118758.
3. Caridi, A., Sidari, R., Krakova, L., Kuchta, T., & Pangallo, D. (2015). Assessment of color adsorption by yeast using grape skin agar and impact on red wine color. Journal International de La Vigne et Du Vin, 49, 195–203.
4. Bozic, T. J., Butinar, L., Albreht, A., Vovk, I., Korte, D., & Mozeti, B. (2020). LWT – Food Science and Technology The impact of Saccharomyces and non-Saccharomyces yeasts on wine colour : A laboratory study of vinylphenolic pyranoanthocyanin formation and anthocyanin cell wall adsorption. Food Science and Technology, 123(October 2019), 109072. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

J. Mekoue Nguela¹, O. Teuf¹, S. Assuncao Bicca¹, N. Sieczkowski² ,A. Vernhet¹
1. SPO, Institut Agro Montpellier, INRAE, Univ Montpellier, Montpellier, France.
2. Lallemand SAS, 19 rue des Briquetiers, BP 59, 31 702 Blagnac, France.

Contact the author*

Keywords

Saccharomyces cerevisiae cell walls, Mannosyl phosphorylation, Mannan branching, Wine polyphenols adsorption

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine.

FACTORS AFFECTING QUERCETIN SOLUBILITY IN SANGIOVESE RED WINE: FIRST RESULTS

Quercetin (Q) is present in grape in form of glycosides and as aglycone. These compounds are extracted from grape skins during winemaking. In wines, following the hydrolysis reactions, the amount of quercetin aglycon can exceed its solubility value. Unfortunately, a threshold solubility concentration for quercetin in wine is not easy to determine because it depends on wine matrix (Gambuti et al., 2020).

VOLATILE, PHENOLIC AND COLORIMETRIC CHARACTERIZATION OF THREE DIFFERENT LAMBRUSCO APPELLATIONS

Lambrusco is a commercially successful sparkling red and rosé wine. With 13.06 million litres sold in 2021 was the second best-selling Italian wine after Chianti. According to National Catalogue of Vine Varieties there are thirteen Lambrusco Varieties with which to date are produced seven PDO wines. Among these, “Lambrusco Salamino di Santa Croce”, “Lambrusco Grasparossa di Castelvetro” and “Lambrusco di Sorbara” are the only ones that can be considered mono-varietal appellations, all located in Modena area. The PDOs contemplate the possibility of producing wines by secondary fermentation either in tank (Charmat method), or in bottle (Classico method). Sur lie is a third method commonly employed for Lambrusco, similar to the Classico method, from which differs for the absence of disgorgement.

GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

Port is a fortified wine, produced from grapes grown in the demarcated Douro region. The fortification process consists in the addition of a grape spirit (77% v/v) to the fermenting juice for fermentation interruption, resulting in remaining residual sugars in the wine and increased alcohol content (19-22%). The approval of grape spirits follows the Appellation (D.O. Port wine) rules1 and it is currently carried out based on analytical control and on sensory evaluation done by the public Institute that upholds the control of the quality of Douro Appellation wines. However, the producers of Port wines would like to have more information about quality markers of grape spirits.

EVALUATION OF A SEAWEED EXTRACT OF RUGULOPTERYX OKAMURAE AGAINST ERYSIPHE NECATOR IN GRAPEVINE

Powdery mildew, caused by Erysiphe necator, is a widespread disease that causes high economical losses in viticulture. The main strategy to control the disease is the recurrent application of sulphur based phytochemical compounds. However, in order to reduce their accumulation in the environment and promote the sustainability of the sector, the European Commission has applied restrictions to the number of pesticide treatments and the maximum quantity of fungicides to be applied in viticulture. Seaweeds, in particular macroalgae, are marine resources rich in sulphated polysaccharides with bio-protective potential for the plant, representing an environmentally-friendly alternative approach for sustainable wine production.