terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Abstract

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity. Furthermore, the presence of mannosyl phosphate groups confers a net negative charge to the cell surface. The structural features in mannoproteins that promote their interactions with polyphenols and adsorption specificity are not clearly established yet. This work aimed to study the impact of mannosyl phosphorylation and mannan backbone branching on polyphenol adsorption by yeast cell walls.

Saccharomyces cerevisiae BY4742 Wild-type and mnn4 and mnn2 mutants (involved in N-glycosyl phosphorylation and mannan backbone branching, respectively) were obtained from EUROSCARF. Cell walls were purified and characterized in terms of total nitrogen, neutral sugar, and global charges. Their interactions with a red wine polyphenolic pool were studied in a wine-like solution by means of adsorption isotherms. Polyphenols were analyzed by means of UV-visible spectrophotometry and High-Per-formance Size-Exclusion Chromatography.

High molecular weight tannins and derived pigments were preferentially adsorbed whatever CW types, however, their affinity was significantly lower for mutants as compared to the wild-type. The mnn4 and mnn2 mutations induced changes in the mannose/protein ratio and a decrease of the CW net charge at wine pH. Both mutations induced a decrease in polyphenol affinity as well as a decrease in CW biosorption capacity, however, the latter was much more pronounced for the mnn4 mutant (N-glycosyl phosphorylation).

This work evidenced the key role of mannosyl phosphorylation on yeast CW functionality regarding wine polyphenol adsorption.

 

1. Mekoue Nguela, J., Teuf, O., Bicca, S. A., & Vernhet, A. (2023). Impact of mannoprotein N-glycosyl phosphorylation and branching on the sorption of wine polyphenols by yeasts and yeast cell walls. Food Chemistry, 403, 134326.
2. Bicca, S. A., Poncet-Legrand, C., Williams, P., Mekoue Nguela, J., Doco, T., & Vernhet, A. (2022). Structural characteristics of Saccharomyces cerevisiae mannoproteins: Impact of their polysaccharide part. Carbohydrate Polymers, 277, 118758.
3. Caridi, A., Sidari, R., Krakova, L., Kuchta, T., & Pangallo, D. (2015). Assessment of color adsorption by yeast using grape skin agar and impact on red wine color. Journal International de La Vigne et Du Vin, 49, 195–203.
4. Bozic, T. J., Butinar, L., Albreht, A., Vovk, I., Korte, D., & Mozeti, B. (2020). LWT – Food Science and Technology The impact of Saccharomyces and non-Saccharomyces yeasts on wine colour : A laboratory study of vinylphenolic pyranoanthocyanin formation and anthocyanin cell wall adsorption. Food Science and Technology, 123(October 2019), 109072. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

J. Mekoue Nguela¹, O. Teuf¹, S. Assuncao Bicca¹, N. Sieczkowski² ,A. Vernhet¹
1. SPO, Institut Agro Montpellier, INRAE, Univ Montpellier, Montpellier, France.
2. Lallemand SAS, 19 rue des Briquetiers, BP 59, 31 702 Blagnac, France.

Contact the author*

Keywords

Saccharomyces cerevisiae cell walls, Mannosyl phosphorylation, Mannan branching, Wine polyphenols adsorption

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3].

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].

IDENTIFICATION OF NEW RESVERATROL DERIVATIVES FORMED IN RED WINE AND THEIR BIOLOGICAL PROPERTIES

Stilbenes are natural bioactive polyphenols produced by grapevine. Recently, we have reviewed the na- tural presence of these compounds in wines [1]. This study showed that the resveratrol and its glycoside, the piceid, are the most abundant stilbenes in wines. Resveratrol is a well-known stilbene with a wide range of biological activities. Due to its specific structure, resveratrol can be oxidized in wines to form various derivatives including oligomers [2]. In this study, we investigate the resveratrol and piceid transformation in wines.

OPTIMIZATION OF EXTRACTION AND DEVELOPMENT OF AN LC-HRMS METHOD TO QUANTIFY GLUTATHIONE IN WHITE WINE LEES AND YEAST DERIVATIVES

Glutathione is a natural tripeptide composed of l-glutamate, l-cysteine and glycine, found in various foods and beverages. In particular, glutathione can be found in its reduced (GSH) or oxidized form (GSSG) in must, wine or yeasts¹. Numerous studies have highlighted the importance of GSH in wine quality and aging potential². During winemaking, especially during aging on lees, GSH helps prevent the harmful effects of oxidation on the aroma of the wine³. Nevertheless, the amounts of GSH/GSSG present in wine lees are often unknown and the choice of operating conditions (quantity of lees and aging time) remains empirical.

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].