terclim by ICS banner
IVES 9 IVES Conference Series 9 INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

Abstract

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well. To the best of our knowledge, a gap exists regarding grape composition – pressing conditions – must composition. To fulfill this gap and support the wine industry, this research aimed to clarify the impact of grape pressing based on both grape and must composition.

Chardonnay (7 samples) and Pinot blanc (2 samples) grapes were collected in vintage 2022 from different vineyards in Franciacorta area (Lombardy, Italy). These grapes were used to produce musts under an industrial scale following the pressing conditions adopted by wineries. Must samples were obtained at different extraction yields (e.g. running juice, 20, 30 [first fraction], 40, 50 [second fraction], 60 and 70 [third fraction] % must yields). The chemical parameters, turbidity units (NTU), color index (ABS 420 nm), total phenol index (TPI), polyphenol oxidase (PPO) activity and antioxidant capacity (AC) were assessed in both grape and must samples.

A decreasing trend of readily assimilable nitrogen and titratable acidity was found in must samples with higher extraction yields, while the opposite was observed for pH, NTU, color index, TPI and AC with a different extend dependent from the grape varieties and pressing conditions. Considering the first fraction must, a high variability in phenol extraction was found, from 16% to about 35%. Such a difference could be attributable to the different pressing conditions adopted as comparable levels of TPI were detected in grapes used (1.7-2.2 g/L, RDS=10%). The PPO activity seemed to be unaffected by the increased must extraction yield. Grape variety was influential on phenol content for the same must yield being higher for Pinot blanc probably due to its thinner skin in comparison to Chardonnay.

This study suggests the phenol-related indexes should be considered in addition to the chemical parameters for the accurate management of the pressing step; it also has been clarifying the relation existing between the composition of grape and must.

 

1. Gawel R., Day M., Van Sluyter S.C., Holt H., Waters E.J., Smith P.A. (2014). White wine taste and mouthfeel as affected by juice extraction and processing. J. Agric. Food Chem. 62, 10008–10014. https://doi.org/10.1021/jf503082v
2. Ferreira-Lima N.E., Burin V.M., Caliari V.,  Bordignon-Luiz M.T. (2016). Impact of pressing conditions on the phenolic com-position, radical scavenging activity and glutathione content of Brazilian Vitis vinifera white wines and evolution during bottle ageing. Food Bioprocess. Technol. 9, 944–957. https://doi.org/10.1007/s11947-016-1680-7
3. Lukic I., Horvat I., Radeka S., Damijanic K., Staver M. (2019). Effect of different levels of skin disruption and contact with oxy-gen during grape processing on phenols, volatile aromas, and sensory characteristics of white wine. J. Food Process. Preserv. 201943, e13960. https://doi.org/10.1111/jfpp.13969
4. Del Fresno J.M., Cardona M., Ossorio P., Loira I., Escott C., Morata A. (2021). White must extraction. In: White Wine Techno-logy. Academic Press. https://doi.org/10.1016/B978-0-12-823497-6.00013-2

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Gvantsa Shanshiashvili¹, Marta Baviera¹, Antonio Tirelli¹, Daniela Fracassetti1,*

1. Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy 

Contact the author*

Keywords

White grape, Must extraction, Sparkling wine, Phenols

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

Winemaking is influenced by micro-organisms, which are largely responsible for the quality of the product. In this context, Non-Saccharomyces and Saccharomyces species are of great importance not only because it influences the development of alcoholic fermentation (AF) but also on the achievement of malolactic fermentation (MLF). Among these yeasts, Torulaspora delbrueckii allows in sequential inoculation with strains of S. cerevisiae shorter MLF realizations [5] . Little information is available on the temporal effect of the presence of T. delbrueckii on (i) the evolution of AF and (ii) the MLF performance.

BORDEAUX RED WINES WITHOUT ADDED SULFITES SPECIFICITIES: COMPOSITIONAL AND SENSORY APPROACHES TOWARDS HIGHLIGHTING AND EXPLAI-NING THEIR SPECIFIC FRUITINESS AND COOLNESS

With the development of naturality expectations, wines produced without any addition of sulfur dioxide (SO₂) become very popular for consumers and such wines are increasingly present on the market. Recent studies also showed that Bordeaux red wines without added SO₂ could be differentiated from a sensory point of view from similar wines produced with SO₂¹. Thus, the aim of the current study was to characterize from a sensory point of view, specific aromas of wines without added SO₂ and to identify compounds involved.

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

ANTHOCYANINS EXTRACTION FROM GRAPE POMACE USING EUTECTIC SOLVENTS

Grape pomace is one of the main by-products generated after pressing in winemaking.Emerging methods, such as ultrasound-assisted extraction with eutectic mixtures, have great potential due to their low toxicity, and high biodegradability. Choline chloride (ChCl) was used as a hydrogen bond acceptor and its corresponding hydrogen bond donor (malic acid, citric acid, and glycerol: urea). Components were heated at 80 °C and stirred until a clear liquid was obtained. Distilled water was added (30 % v/v). A solid-liquid ratio of 1 g pomace per 10 ml of eutectic solvent was used.

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.