terclim by ICS banner
IVES 9 IVES Conference Series 9 INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

Abstract

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well. To the best of our knowledge, a gap exists regarding grape composition – pressing conditions – must composition. To fulfill this gap and support the wine industry, this research aimed to clarify the impact of grape pressing based on both grape and must composition.

Chardonnay (7 samples) and Pinot blanc (2 samples) grapes were collected in vintage 2022 from different vineyards in Franciacorta area (Lombardy, Italy). These grapes were used to produce musts under an industrial scale following the pressing conditions adopted by wineries. Must samples were obtained at different extraction yields (e.g. running juice, 20, 30 [first fraction], 40, 50 [second fraction], 60 and 70 [third fraction] % must yields). The chemical parameters, turbidity units (NTU), color index (ABS 420 nm), total phenol index (TPI), polyphenol oxidase (PPO) activity and antioxidant capacity (AC) were assessed in both grape and must samples.

A decreasing trend of readily assimilable nitrogen and titratable acidity was found in must samples with higher extraction yields, while the opposite was observed for pH, NTU, color index, TPI and AC with a different extend dependent from the grape varieties and pressing conditions. Considering the first fraction must, a high variability in phenol extraction was found, from 16% to about 35%. Such a difference could be attributable to the different pressing conditions adopted as comparable levels of TPI were detected in grapes used (1.7-2.2 g/L, RDS=10%). The PPO activity seemed to be unaffected by the increased must extraction yield. Grape variety was influential on phenol content for the same must yield being higher for Pinot blanc probably due to its thinner skin in comparison to Chardonnay.

This study suggests the phenol-related indexes should be considered in addition to the chemical parameters for the accurate management of the pressing step; it also has been clarifying the relation existing between the composition of grape and must.

 

1. Gawel R., Day M., Van Sluyter S.C., Holt H., Waters E.J., Smith P.A. (2014). White wine taste and mouthfeel as affected by juice extraction and processing. J. Agric. Food Chem. 62, 10008–10014. https://doi.org/10.1021/jf503082v
2. Ferreira-Lima N.E., Burin V.M., Caliari V.,  Bordignon-Luiz M.T. (2016). Impact of pressing conditions on the phenolic com-position, radical scavenging activity and glutathione content of Brazilian Vitis vinifera white wines and evolution during bottle ageing. Food Bioprocess. Technol. 9, 944–957. https://doi.org/10.1007/s11947-016-1680-7
3. Lukic I., Horvat I., Radeka S., Damijanic K., Staver M. (2019). Effect of different levels of skin disruption and contact with oxy-gen during grape processing on phenols, volatile aromas, and sensory characteristics of white wine. J. Food Process. Preserv. 201943, e13960. https://doi.org/10.1111/jfpp.13969
4. Del Fresno J.M., Cardona M., Ossorio P., Loira I., Escott C., Morata A. (2021). White must extraction. In: White Wine Techno-logy. Academic Press. https://doi.org/10.1016/B978-0-12-823497-6.00013-2

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Gvantsa Shanshiashvili¹, Marta Baviera¹, Antonio Tirelli¹, Daniela Fracassetti1,*

1. Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy 

Contact the author*

Keywords

White grape, Must extraction, Sparkling wine, Phenols

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated.

NOVEL BENZENETHIOLS WITH PHENOLS CAUSE ASHY, SMOKE FLAVOR PERCEPTION IN RED WINES

Smoke impacts on wines are becoming a worldwide problem; the size and severity of wildfires increasing due to influences from changing climates.¹ For over a century, wines have been known to have a unique issue of absorbing chemical compounds derived from wildfire smoke wherein the flavor of the subsequent wine becomes ashy, rubbery, campfire-like, and smoky.² The economic impacts of a smoke-impacted wine can last for years depending on the grape varietal, costing Oregon and Washington states in the United States over a billion dollars from the 2020 wildfires, as an example.³ While years of research have indicated elevated concentrations of smoke-related compounds, such as guaiacol and syringol, in wines after smoke events, unfortunately, replicating the sensory experience using smoke-associated phenols has not had much success.⁴

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.

FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

The alteration in the rainfall pattern and the increase in the temperatures associated to global climate change are already affecting wine production in many viticultural regions all around the world (1). In fact, grapes are nowadays ripening earlier from a technological point of view than in the past, but they are not necessarily mature from a phenolic point of view. Consequently, the wines made from these grapes can be unbalanced or show high alcohol content. Dramatic shifts in viticultural areas are currently being projected for the future (2).

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.